Properties

Degree 4
Conductor $ 2^{3} \cdot 5^{2} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s − 0.962·3-s + 0.125·4-s + 0.340·6-s − 1.07·7-s − 0.0441·8-s − 0.185·9-s + 1.06·11-s − 0.120·12-s + 0.853·13-s + 0.381·14-s + 0.0156·16-s + 1.07·17-s + 0.0654·18-s − 0.784·19-s + 1.03·21-s − 0.377·22-s − 0.543·23-s + 0.0425·24-s − 25-s − 0.301·26-s + 0.285·27-s − 0.134·28-s − 0.672·31-s − 0.00552·32-s − 1.02·33-s − 0.378·34-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(200\)    =    \(2^{3} \cdot 5^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 200,\ (\ :1.5, 0.5),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1+125\ 5^{-2 s})^{-1}\prod_{p \nmid 50 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{3}) \approx 0.3615618722\] \[L(1, E, \mathrm{sym}^{3}) \approx 0.5585297994\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line