Properties

Degree 4
Conductor $ 2^{6} \cdot 5^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.0894·5-s − 0.431·7-s − 2·9-s − 0.657·11-s + 0.938·13-s − 0.856·17-s − 1.06·19-s − 1.08·23-s + 0.00800·25-s + 0.691·29-s − 0.0926·31-s − 0.0386·35-s − 1.01·37-s + 1.05·41-s + 0.624·43-s − 0.178·45-s − 0.968·47-s − 0.180·49-s − 1.08·53-s − 0.0588·55-s + 0.900·59-s + 0.495·61-s + 0.863·63-s + 0.0839·65-s − 1.02·67-s + 1.05·73-s + 0.284·77-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 8000 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(8000\)    =    \(2^{6} \cdot 5^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 8000,\ (\ :1.5, 0.5),\ -1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1-5^{- s})^{-1}\prod_{p \nmid 40 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{3}) \approx 0\] \[L(1, E, \mathrm{sym}^{3}) \approx 0.6440527444\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line