# Properties

 Degree 4 Conductor $2^{3} \cdot 13873^{3}$ Sign $-1$ Motivic weight 3 Primitive yes Self-dual yes

# Related objects

(not yet available)

## Dirichlet series

 $L(s, E, \mathrm{sym}^{3})$  = 1 − 0.353·2-s + 0.769·3-s + 0.125·4-s + 1.07·5-s − 0.272·6-s − 0.431·7-s − 0.0441·8-s + 0.814·9-s − 0.379·10-s − 0.411·11-s + 0.0962·12-s + 0.853·13-s + 0.152·14-s + 0.826·15-s + 0.0156·16-s + 0.642·17-s − 0.288·18-s − 0.929·19-s + 0.134·20-s − 0.332·21-s + 0.145·22-s + 0.543·23-s − 0.0340·24-s + 0.912·25-s − 0.301·26-s + 1.56·27-s − 0.0539·28-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(2^{3} \cdot 13873^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}

## Invariants

 $$d$$ = $$4$$ $$N$$ = $$2^{3} \cdot 13873^{3}$$ $$\varepsilon$$ = $-1$ primitive : yes self-dual : yes Selberg data = $(4,\ 2^{3} \cdot 13873^{3} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

## Euler product

\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1+13873^{ -s})^{-1}\prod_{p \nmid 27746 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}

## Particular Values

L(1/2): not computed L(1): not computed

## Imaginary part of the first few zeros on the critical line

Zeros not available.

## Graph of the $Z$-function along the critical line

Plot not available.