Properties

Degree 4
Conductor $ 2^{3} \cdot 3^{3} \cdot 29^{3} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 0.353·2-s + 0.192·3-s + 0.125·4-s + 0.268·5-s − 0.0680·6-s + 2.96·7-s − 0.0441·8-s + 0.0370·9-s − 0.0948·10-s + 2.30·11-s + 0.0240·12-s + 0.853·13-s − 1.04·14-s + 0.0516·15-s + 0.0156·16-s − 1.07·17-s − 0.0130·18-s + 0.446·19-s + 0.0335·20-s + 0.571·21-s − 0.814·22-s − 0.00850·24-s + 0.232·25-s − 0.301·26-s + 0.00712·27-s + 0.371·28-s − 0.00640·29-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 5268024 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(5268024\)    =    \(2^{3} \cdot 3^{3} \cdot 29^{3}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 5268024,\ (\ :1.5, 0.5),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1+2^{ -s})^{-1}(1-3^{- s})^{-1}(1+29^{ -s})^{-1}\prod_{p \nmid 174 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.