# Properties

 Degree 4 Conductor $11^{4}$ Sign $-1$ Motivic weight 3 Primitive yes Self-dual yes

# Learn more about

(not yet available)

## Dirichlet series

 $L(s, E, \mathrm{sym}^{3})$  = 1 + 1.06·2-s − 0.769·3-s + 0.375·4-s − 0.804·5-s − 0.816·6-s − 1.07·7-s + 0.662·8-s + 0.814·9-s − 0.853·10-s − 0.288·12-s + 0.533·13-s − 1.14·14-s + 0.619·15-s + 0.546·16-s − 0.642·17-s + 0.864·18-s + 0.144·19-s − 0.301·20-s + 0.831·21-s − 0.761·23-s − 0.510·24-s − 0.792·25-s + 0.565·26-s − 1.56·27-s − 0.404·28-s − 1.32·29-s + 0.657·30-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 14641 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}

## Invariants

 $$d$$ = $$4$$ $$N$$ = $$14641$$    =    $$11^{4}$$ $$\varepsilon$$ = $-1$ primitive : yes self-dual : yes Selberg data = $(4,\ 14641,\ (\ :1.5, 0.5),\ -1)$

## Euler product

\begin{aligned} L(s, E, \mathrm{sym}^{3}) = \prod_{p \nmid 121 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}

## Particular Values

$L(1/2, E, \mathrm{sym}^{3}) \approx 0$ $L(1, E, \mathrm{sym}^{3}) \approx 0.8558322879$