Properties

Degree 3
Conductor $ 3^{2} \cdot 19^{2} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  − 0.5·2-s + 0.333·3-s + 0.750·4-s − 0.200·5-s − 0.166·6-s − 7-s + 0.375·8-s + 0.111·9-s + 0.100·10-s − 11-s + 0.250·12-s + 1.76·13-s + 0.5·14-s − 0.0666·15-s − 0.312·16-s + 1.11·17-s − 0.0555·18-s + 0.0526·19-s − 0.149·20-s − 0.333·21-s + 0.5·22-s − 0.304·23-s + 0.125·24-s + 0.239·25-s − 0.884·26-s + 0.0370·27-s − 0.750·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 3249 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(3249\)    =    \(3^{2} \cdot 19^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 3249,\ (1:1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1-3^{- s})^{-1}(1-19^{- s})^{-1}\prod_{p \nmid 57 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.578161517\] \[L(1, E, \mathrm{sym}^{2}) \approx 1.079612944\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line