Properties

Degree 3
Conductor $ 2^{2} \cdot 3^{4} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 0.5·2-s + 0.250·4-s + 0.800·5-s − 0.857·7-s + 0.125·8-s + 0.400·10-s − 0.181·11-s + 0.230·13-s − 0.428·14-s + 0.0625·16-s − 17-s − 0.789·19-s + 0.200·20-s − 0.0909·22-s + 0.565·23-s − 0.160·25-s + 0.115·26-s − 0.214·28-s + 0.241·29-s − 0.193·31-s + 0.0312·32-s − 0.5·34-s − 0.685·35-s − 0.891·37-s − 0.394·38-s + 0.100·40-s − 0.121·41-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(324\)    =    \(2^{2} \cdot 3^{4}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 324,\ (1:1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1-2^{- s})^{-1} \prod_{p \nmid 54 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.356726895\] \[L(1, E, \mathrm{sym}^{2}) \approx 1.311355513\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line