Properties

Degree 3
Conductor $ 2^{6} \cdot 431^{2} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  + 2·3-s + 0.800·5-s + 1.28·7-s + 2·9-s + 1.27·11-s + 0.230·13-s + 1.60·15-s + 1.11·17-s + 1.57·19-s + 2.57·21-s − 0.608·23-s − 0.160·25-s + 27-s − 0.689·29-s − 0.483·31-s + 2.54·33-s + 1.02·35-s + 0.729·37-s + 0.461·39-s − 0.121·41-s + 0.488·43-s + 1.60·45-s − 0.234·47-s + 0.367·49-s + 2.23·51-s − 0.981·53-s + 1.01·55-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 11888704 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(11888704\)    =    \(2^{6} \cdot 431^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 11888704,\ (1:1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1-431^{- s})^{-1}\prod_{p \nmid 27584 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.