Properties

Degree 3
Conductor $ 2^{2} \cdot 3^{2} \cdot 11^{2} $
Sign $1$
Motivic weight 2
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{2})$  = 1  − 2-s + 0.333·3-s + 4-s − 0.200·5-s − 0.333·6-s − 0.428·7-s − 8-s + 0.111·9-s + 0.200·10-s + 0.0909·11-s + 0.333·12-s + 1.76·13-s + 0.428·14-s − 0.0666·15-s + 16-s − 0.0588·17-s − 0.111·18-s − 0.789·19-s − 0.200·20-s − 0.142·21-s − 0.0909·22-s + 1.78·23-s − 0.333·24-s + 0.239·25-s − 1.76·26-s + 0.0370·27-s − 0.428·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 4356 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned} \]

Invariants

\( d \)  =  \(3\)
\( N \)  =  \(4356\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(3,\ 4356,\ (1:1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1+2\ 2^{- s})^{-1}(1-3^{- s})^{-1}(1-11^{- s})^{-1}\prod_{p \nmid 132 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

\[L(1/2, E, \mathrm{sym}^{2}) \approx 1.201068707\] \[L(1, E, \mathrm{sym}^{2}) \approx 0.8296335445\]

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line