Properties

 Degree 3 Conductor $2^{2} \cdot 5^{2} \cdot 11^{2}$ Sign $1$ Motivic weight 2 Primitive yes Self-dual yes

Related objects

(not yet available)

Dirichlet series

 $L(s, E, \mathrm{sym}^{2})$  = 1 + 0.5·2-s − 0.666·3-s + 0.250·4-s + 0.200·5-s − 0.333·6-s − 0.857·7-s + 0.125·8-s + 1.11·9-s + 0.100·10-s + 0.0909·11-s − 0.166·12-s − 0.692·13-s − 0.428·14-s − 0.133·15-s + 0.0625·16-s − 0.470·17-s + 0.555·18-s − 0.947·19-s + 0.0500·20-s + 0.571·21-s + 0.0454·22-s + 0.565·23-s − 0.0833·24-s + 0.0400·25-s − 0.346·26-s − 0.185·27-s − 0.214·28-s + ⋯

Functional equation

\begin{aligned} \Lambda(s,E,\mathrm{sym}^{2})=\mathstrut & 12100 ^{s/2} \, \Gamma_{\R}(s+1) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{2})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{2}) \end{aligned}

Invariants

 $$d$$ = $$3$$ $$N$$ = $$12100$$    =    $$2^{2} \cdot 5^{2} \cdot 11^{2}$$ $$\varepsilon$$ = $1$ primitive : yes self-dual : yes Selberg data = $(3,\ 12100,\ (1:1.0),\ 1)$

Euler product

\begin{aligned} L(s, E, \mathrm{sym}^{2}) = (1-2^{- s})^{-1}(1-5^{- s})^{-1}(1-11^{- s})^{-1}\prod_{p \nmid 110 }\prod_{j=0}^{2} \left(1- \frac{\alpha_p^j\beta_p^{2-j}}{p^{s}} \right)^{-1} \end{aligned}

Particular Values

$L(1/2, E, \mathrm{sym}^{2}) \approx 1.848478588$ $L(1, E, \mathrm{sym}^{2}) \approx 1.147863057$