Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 61 $
Sign $1$
Motivic weight 0
Primitive no
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$\zeta_K(s)$  = 1  + 3-s + 4-s + 5-s + 2·7-s + 9-s + 2·11-s + 12-s + 15-s + 16-s + 2·19-s + 20-s + 2·21-s + 25-s + 27-s + 2·28-s + 2·29-s + 2·33-s + 2·35-s + 36-s + 2·37-s + 2·43-s + 2·44-s + 45-s + 2·47-s + 48-s + 3·49-s + 2·55-s + ⋯

Functional equation

\[\begin{aligned} \Lambda_K(s)=\mathstrut & 915 ^{s/2} \, \Gamma_{\C}(s) \, \zeta_K(s)\cr =\mathstrut & \, \Lambda_K(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(915\)    =    \(3 \cdot 5 \cdot 61\)
\( \varepsilon \)  =  $1$
primitive  :  no
self-dual  :  yes
Selberg data  =  $(2,\ 915,\ (\ :0),\ 1)$

Euler product

\[\begin{aligned} \zeta_K(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Factorization

\(\zeta_K(s) =\) \(\zeta(s)\)\(\;\cdot\) \(L(s,\chi_{915}(914, \cdot))\)

Particular Values

\[\zeta_K(1/2) \approx -2.194161984\]
Pole at \(s=1\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line