Properties

Degree 4
Conductor 1
Sign $1$
Self-dual no

Related objects

Downloads

Dirichlet series

$L(s,f)$  = 1  + (0.556 + 0.928i) 2-s + (−0.579 + 0.044i) 3-s + (0.179 + 1.033i) 4-s + (0.652 − 0.534i) 5-s + (−0.363 − 0.512i) 6-s + (−0.493 − 0.018i) 7-s + (0.104 + 0.491i) 8-s + (−0.572 − 0.051i) 9-s + (0.859 + 0.308i) 10-s + (0.130 + 0.335i) 11-s + (−0.149 − 0.590i) 12-s + (0.259 − 0.340i) 13-s + (−0.257 − 0.468i) 14-s + (−0.354 + 0.338i) 15-s + (−0.096 + 1.125i) 16-s + (0.282 − 0.246i) 17-s + ⋯

Functional equation

\[\begin{align} \Lambda(s,f)=\mathstrut &\Gamma_{\R}(s+16.89i)\Gamma_{\R}(s+2.272i)\Gamma_{\R}(s-6.035 i)\Gamma_{\R}(s-13.13 i) \cdot L(s,f)\cr =\mathstrut & \Lambda(1-s,\overline{f}) \end{align} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(1\)    =    \(1\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  no
Selberg data  =  $(4,\ 1,\ (16.8997271559i, 2.27258771492i, -6.03583588968i, -13.1364789812i:\ ),\ 1)$

Euler product

\[\begin{equation} L(s,f) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{equation}\]

Imaginary part of the first few zeros on the critical line

−23.269117762, −22.422146922, −20.966010253, −19.295091037, −13.912595350, −11.648210792, −10.280168565, −6.028325425, 16.189015970, 17.414853804, 20.234411486, 21.920334804, 22.890264604, 24.278949288

Graph of the $Z$-function along the critical line