# Properties

 Degree 3 Conductor $2^{2}$ Sign $1$ Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 $L(s,f)$  = 1 +(0.5)·2-s + (1.06 + 0.481i)3-s +(0.25)·4-s + (−0.248 − 0.0721i)5-s + (0.533 + 0.240i)6-s + (0.676 − 0.291i)7-s +(0.125)·8-s + (−0.161 + 1.50i)9-s + (−0.124 − 0.0360i)10-s + (−0.264 − 0.294i)11-s + (0.266 + 0.120i)12-s + (−0.771 − 0.00362i)13-s + (0.338 − 0.145i)14-s + (−0.230 − 0.196i)15-s +(0.0625)·16-s + (0.335 − 0.143i)17-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s,f)=\mathstrut & 4 ^{s/2} \, \Gamma_{\R}(s+8.23i) \, \Gamma_{\R}(s+2.64i) \, \Gamma_{\R}(s-10.8i) \, L(s,f)\cr =\mathstrut & \, \Lambda(1-s,\overline{f}) \end{aligned}

## Invariants

 $$d$$ = $$3$$ $$N$$ = $$4$$    =    $$2^{2}$$ $$\varepsilon$$ = $1$ primitive : yes self-dual : no Selberg data = $(3,\ 4,\ (8.239796i, 2.641226i, -10.881024i:\ ),\ 1)$

## Euler product

\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \overline{a(p)} p^{-2s} - p^{-3s})^{-1} \end{aligned}

## Imaginary part of the first few zeros on the critical line

−24.1020, −23.0757, −21.3176, −20.3333, −19.1542, −17.5728, −15.1645, −14.2232, −12.2527, 2.6576, 4.6967, 8.0717, 13.8334, 15.0792, 16.8507, 19.1905, 20.2680, 21.3171, 22.6026, 24.1266