# Properties

 Degree 3 Conductor $1$ Sign $1$ Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 $L(s,f)$  = 1 + (−0.421 + 1.06i)2-s + (−0.768 − 1.31i)3-s + (−0.541 + 0.167i)4-s + (−0.400 + 0.239i)5-s + (1.72 − 0.266i)6-s + (−0.117 + 0.553i)7-s + (−0.268 − 0.648i)8-s + (−0.366 + 0.703i)9-s + (−0.0872 − 0.528i)10-s + (−0.0411 − 0.100i)11-s + (0.635 + 0.582i)12-s + (−0.309 − 0.328i)13-s + (−0.541 − 0.358i)14-s + (0.622 + 0.341i)15-s + (−0.0226 + 0.546i)16-s + (0.259 − 0.620i)17-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s,f)=\mathstrut &\Gamma_{\R}(s+16.4i) \, \Gamma_{\R}(s+0.171i) \, \Gamma_{\R}(s-16.5i) \, L(s,f)\cr =\mathstrut & \,\Lambda(1-s,\overline{f}) \end{aligned}

## Invariants

 $$d$$ = $$3$$ $$N$$ = $$1$$    =    $$1$$ $$\varepsilon$$ = $1$ primitive : yes self-dual : no Selberg data = $(3,\ 1,\ (16.403124740291375i, 0.17112189172831185i, -16.574246632019687i:\ ),\ 1)$

## Euler product

\begin{aligned} L(s,f) = \prod_{p\ \mathrm{bad}} (1- a(p) p^{-s})^{-1} \prod_{p\ \mathrm{good}} (1- a(p) p^{-s} + \overline{a(p)} p^{-2s} - p^{-3s})^{-1} \end{aligned}

## Imaginary part of the first few zeros on the critical line

−23.4129437373605, −21.6868858848525, −19.8646960903853, −11.1407921358216, −9.8664332915609, −4.6144521141879, 6.4222353306131, 7.8655276953699, 12.3429586556897, 18.3920792539766, 22.6875461169111, 24.2616362328567