Properties

Label 4-255e2-1.1-c1e2-0-5
Degree $4$
Conductor $65025$
Sign $-1$
Analytic cond. $4.14605$
Root an. cond. $1.42694$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s + 4·7-s + 9-s + 2·12-s − 3·16-s − 8·19-s − 8·21-s − 5·25-s + 4·27-s − 4·28-s − 36-s − 8·37-s + 6·48-s − 2·49-s + 16·57-s + 4·63-s + 7·64-s − 8·73-s + 10·75-s + 8·76-s − 11·81-s + 8·84-s + 16·97-s + 5·100-s − 4·108-s + 16·111-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/2·4-s + 1.51·7-s + 1/3·9-s + 0.577·12-s − 3/4·16-s − 1.83·19-s − 1.74·21-s − 25-s + 0.769·27-s − 0.755·28-s − 1/6·36-s − 1.31·37-s + 0.866·48-s − 2/7·49-s + 2.11·57-s + 0.503·63-s + 7/8·64-s − 0.936·73-s + 1.15·75-s + 0.917·76-s − 1.22·81-s + 0.872·84-s + 1.62·97-s + 1/2·100-s − 0.384·108-s + 1.51·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(65025\)    =    \(3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(4.14605\)
Root analytic conductor: \(1.42694\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 65025,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
17$C_2$ \( 1 + p T^{2} \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.765943762067730233506644822169, −8.926879393574297996153906747429, −8.695372705841464747364612145313, −8.179017934071532057682505257545, −7.65915795055618436127855465882, −6.95271599818545416907011775238, −6.40006853654927336554404315520, −5.92676279224525644903587034681, −5.21879136513047480917226119288, −4.79899508194714834866543797801, −4.40518336224367655451174519155, −3.68219362339604559493338616127, −2.36933666514572285556401057482, −1.59784097653209773151986533836, 0, 1.59784097653209773151986533836, 2.36933666514572285556401057482, 3.68219362339604559493338616127, 4.40518336224367655451174519155, 4.79899508194714834866543797801, 5.21879136513047480917226119288, 5.92676279224525644903587034681, 6.40006853654927336554404315520, 6.95271599818545416907011775238, 7.65915795055618436127855465882, 8.179017934071532057682505257545, 8.695372705841464747364612145313, 8.926879393574297996153906747429, 9.765943762067730233506644822169

Graph of the $Z$-function along the critical line