Properties

Label 4-185e2-1.1-c1e2-0-4
Degree $4$
Conductor $34225$
Sign $-1$
Analytic cond. $2.18221$
Root an. cond. $1.21541$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 5·9-s + 6·11-s + 12·16-s + 4·19-s − 5·25-s − 12·29-s − 8·31-s + 20·36-s − 18·41-s − 24·44-s − 13·49-s + 24·59-s + 16·61-s − 32·64-s − 30·71-s − 16·76-s − 20·79-s + 16·81-s + 12·89-s − 30·99-s + 20·100-s + 6·101-s + 4·109-s + 48·116-s + 5·121-s + 32·124-s + ⋯
L(s)  = 1  − 2·4-s − 5/3·9-s + 1.80·11-s + 3·16-s + 0.917·19-s − 25-s − 2.22·29-s − 1.43·31-s + 10/3·36-s − 2.81·41-s − 3.61·44-s − 1.85·49-s + 3.12·59-s + 2.04·61-s − 4·64-s − 3.56·71-s − 1.83·76-s − 2.25·79-s + 16/9·81-s + 1.27·89-s − 3.01·99-s + 2·100-s + 0.597·101-s + 0.383·109-s + 4.45·116-s + 5/11·121-s + 2.87·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(34225\)    =    \(5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(2.18221\)
Root analytic conductor: \(1.21541\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 34225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 + p T^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.819966817497618882768827794755, −9.591268537738103586397612813688, −9.032345851694468357832029856913, −8.647494221806725911176641352691, −8.390237773813478013059373004459, −7.59911177067371416247669368567, −6.96328856044475469810412834337, −6.03232690048232103384500782557, −5.44973416215471530225317007593, −5.31354420552212102801103714157, −4.28699193481010687037956905954, −3.50910294340479626549928321873, −3.49397830742570960606550504227, −1.63648598905395091233402759288, 0, 1.63648598905395091233402759288, 3.49397830742570960606550504227, 3.50910294340479626549928321873, 4.28699193481010687037956905954, 5.31354420552212102801103714157, 5.44973416215471530225317007593, 6.03232690048232103384500782557, 6.96328856044475469810412834337, 7.59911177067371416247669368567, 8.390237773813478013059373004459, 8.647494221806725911176641352691, 9.032345851694468357832029856913, 9.591268537738103586397612813688, 9.819966817497618882768827794755

Graph of the $Z$-function along the critical line