Properties

Label 4-44e3-1.1-c1e2-0-3
Degree $4$
Conductor $85184$
Sign $-1$
Analytic cond. $5.43140$
Root an. cond. $1.52660$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 4·7-s − 5·9-s − 11-s + 16·19-s + 17·25-s − 24·35-s − 2·37-s − 20·43-s + 30·45-s − 2·49-s − 12·53-s + 6·55-s − 20·63-s − 4·77-s + 4·79-s + 16·81-s + 12·83-s − 18·89-s − 96·95-s − 14·97-s + 5·99-s + 12·107-s − 30·113-s + 121-s − 18·125-s + 127-s + ⋯
L(s)  = 1  − 2.68·5-s + 1.51·7-s − 5/3·9-s − 0.301·11-s + 3.67·19-s + 17/5·25-s − 4.05·35-s − 0.328·37-s − 3.04·43-s + 4.47·45-s − 2/7·49-s − 1.64·53-s + 0.809·55-s − 2.51·63-s − 0.455·77-s + 0.450·79-s + 16/9·81-s + 1.31·83-s − 1.90·89-s − 9.84·95-s − 1.42·97-s + 0.502·99-s + 1.16·107-s − 2.82·113-s + 1/11·121-s − 1.60·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 85184 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85184 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(85184\)    =    \(2^{6} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(5.43140\)
Root analytic conductor: \(1.52660\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 85184,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.422536869125018616649806813738, −8.605213066943072523475490546148, −8.132665807481574488057539990847, −8.106469985083330538380333325542, −7.60852684015633966980596452192, −7.26152152624268428704712414891, −6.49340012695586359351910248567, −5.43339609963471466451709551596, −5.11227132195889762323685903220, −4.79469791447770690232597181563, −3.82876273665516882094535074726, −3.27381985666804460223319703873, −3.00443596972753636527090013772, −1.36947441810401211657481497357, 0, 1.36947441810401211657481497357, 3.00443596972753636527090013772, 3.27381985666804460223319703873, 3.82876273665516882094535074726, 4.79469791447770690232597181563, 5.11227132195889762323685903220, 5.43339609963471466451709551596, 6.49340012695586359351910248567, 7.26152152624268428704712414891, 7.60852684015633966980596452192, 8.106469985083330538380333325542, 8.132665807481574488057539990847, 8.605213066943072523475490546148, 9.422536869125018616649806813738

Graph of the $Z$-function along the critical line