Properties

Label 4-616e2-1.1-c1e2-0-17
Degree $4$
Conductor $379456$
Sign $1$
Analytic cond. $24.1944$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·7-s − 3·9-s + 16·19-s + 4·21-s − 25-s − 14·27-s + 10·31-s − 2·37-s − 3·49-s − 12·53-s + 32·57-s + 6·59-s − 6·63-s − 2·75-s − 4·81-s + 12·83-s + 20·93-s + 16·103-s + 4·109-s − 4·111-s − 30·113-s + 121-s + 127-s + 131-s + 32·133-s + 137-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.755·7-s − 9-s + 3.67·19-s + 0.872·21-s − 1/5·25-s − 2.69·27-s + 1.79·31-s − 0.328·37-s − 3/7·49-s − 1.64·53-s + 4.23·57-s + 0.781·59-s − 0.755·63-s − 0.230·75-s − 4/9·81-s + 1.31·83-s + 2.07·93-s + 1.57·103-s + 0.383·109-s − 0.379·111-s − 2.82·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 2.77·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 379456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 379456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(379456\)    =    \(2^{6} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(24.1944\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 379456,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.936582794\)
\(L(\frac12)\) \(\approx\) \(2.936582794\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.607074551585026726901312251020, −8.132665807481574488057539990847, −7.87110218888344770753210710353, −7.60852684015633966980596452192, −7.00173382186013135401075978172, −6.30575248548466868036234960594, −5.78408513013589990534397837958, −5.14377144773301545133518979753, −5.11227132195889762323685903220, −4.20362350660513118934837301951, −3.27381985666804460223319703873, −3.25753016666133195336025247275, −2.66054946243124667318595839863, −1.84385955720565734738536893245, −0.942835376243860514734661121549, 0.942835376243860514734661121549, 1.84385955720565734738536893245, 2.66054946243124667318595839863, 3.25753016666133195336025247275, 3.27381985666804460223319703873, 4.20362350660513118934837301951, 5.11227132195889762323685903220, 5.14377144773301545133518979753, 5.78408513013589990534397837958, 6.30575248548466868036234960594, 7.00173382186013135401075978172, 7.60852684015633966980596452192, 7.87110218888344770753210710353, 8.132665807481574488057539990847, 8.607074551585026726901312251020

Graph of the $Z$-function along the critical line