Properties

Label 4-499392-1.1-c1e2-0-10
Degree $4$
Conductor $499392$
Sign $1$
Analytic cond. $31.8416$
Root an. cond. $2.37546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 6·5-s + 9-s − 2·12-s + 6·15-s + 4·16-s − 2·19-s − 12·20-s + 18·23-s + 17·25-s + 27-s + 12·29-s − 2·36-s − 14·43-s + 6·45-s − 12·47-s + 4·48-s + 2·49-s − 12·53-s − 2·57-s − 12·60-s − 8·64-s − 8·67-s + 18·69-s + 24·71-s + 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 2.68·5-s + 1/3·9-s − 0.577·12-s + 1.54·15-s + 16-s − 0.458·19-s − 2.68·20-s + 3.75·23-s + 17/5·25-s + 0.192·27-s + 2.22·29-s − 1/3·36-s − 2.13·43-s + 0.894·45-s − 1.75·47-s + 0.577·48-s + 2/7·49-s − 1.64·53-s − 0.264·57-s − 1.54·60-s − 64-s − 0.977·67-s + 2.16·69-s + 2.84·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 499392 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 499392 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(499392\)    =    \(2^{6} \cdot 3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(31.8416\)
Root analytic conductor: \(2.37546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 499392,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.623782528\)
\(L(\frac12)\) \(\approx\) \(3.623782528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_1$ \( 1 - T \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.618966621189813626434174913816, −8.314506166371985811982082864189, −7.79303952698470481568778832395, −6.76945764827107790687114381372, −6.66463575826783700250676263362, −6.40959827015436577970274639195, −5.52928744974309714451608173806, −5.14306131647545403565477997005, −4.96593914963688452623551493731, −4.43400572211820912324912288374, −3.33065163930804441307691290385, −3.00632648437536992753290178800, −2.44673583930559801289396227405, −1.54383370192840503594716272369, −1.15713044816513337869513126279, 1.15713044816513337869513126279, 1.54383370192840503594716272369, 2.44673583930559801289396227405, 3.00632648437536992753290178800, 3.33065163930804441307691290385, 4.43400572211820912324912288374, 4.96593914963688452623551493731, 5.14306131647545403565477997005, 5.52928744974309714451608173806, 6.40959827015436577970274639195, 6.66463575826783700250676263362, 6.76945764827107790687114381372, 7.79303952698470481568778832395, 8.314506166371985811982082864189, 8.618966621189813626434174913816

Graph of the $Z$-function along the critical line