Properties

Label 4-27648-1.1-c1e2-0-11
Degree $4$
Conductor $27648$
Sign $1$
Analytic cond. $1.76286$
Root an. cond. $1.15227$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s + 4·15-s + 8·19-s − 16·23-s + 2·25-s + 27-s − 12·29-s − 8·43-s + 4·45-s − 14·49-s + 4·53-s + 8·57-s + 8·67-s − 16·69-s + 16·71-s + 20·73-s + 2·75-s + 81-s − 12·87-s + 32·95-s + 4·97-s + 36·101-s − 64·115-s − 6·121-s − 28·125-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s + 1.03·15-s + 1.83·19-s − 3.33·23-s + 2/5·25-s + 0.192·27-s − 2.22·29-s − 1.21·43-s + 0.596·45-s − 2·49-s + 0.549·53-s + 1.05·57-s + 0.977·67-s − 1.92·69-s + 1.89·71-s + 2.34·73-s + 0.230·75-s + 1/9·81-s − 1.28·87-s + 3.28·95-s + 0.406·97-s + 3.58·101-s − 5.96·115-s − 0.545·121-s − 2.50·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27648 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27648 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(27648\)    =    \(2^{10} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(1.76286\)
Root analytic conductor: \(1.15227\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 27648,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.898583062\)
\(L(\frac12)\) \(\approx\) \(1.898583062\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20677110069933956172337352464, −9.785656483951954927896383611288, −9.747086677582411849557090474382, −9.298977106556460794427243537385, −8.456614023795656741730916500766, −7.77541900804615864403738320707, −7.61947548271568794045481490015, −6.50812189570177474416634496690, −6.16826675668887144123811676692, −5.48498394296229820428473072147, −5.14444399128618341481533912587, −3.89741909491206350829507060388, −3.43299575130251299450107440988, −1.99999348241168201324552330088, −1.97363471421369880359461961552, 1.97363471421369880359461961552, 1.99999348241168201324552330088, 3.43299575130251299450107440988, 3.89741909491206350829507060388, 5.14444399128618341481533912587, 5.48498394296229820428473072147, 6.16826675668887144123811676692, 6.50812189570177474416634496690, 7.61947548271568794045481490015, 7.77541900804615864403738320707, 8.456614023795656741730916500766, 9.298977106556460794427243537385, 9.747086677582411849557090474382, 9.785656483951954927896383611288, 10.20677110069933956172337352464

Graph of the $Z$-function along the critical line