Properties

Label 4-93312-1.1-c1e2-0-22
Degree $4$
Conductor $93312$
Sign $-1$
Analytic cond. $5.94965$
Root an. cond. $1.56179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 6·5-s + 8-s − 6·10-s + 16-s + 4·19-s − 6·20-s + 12·23-s + 17·25-s − 12·29-s + 32-s + 4·38-s − 6·40-s − 20·43-s + 12·46-s − 12·47-s − 13·49-s + 17·50-s − 18·53-s − 12·58-s + 64-s + 28·67-s − 14·73-s + 4·76-s − 6·80-s − 20·86-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 2.68·5-s + 0.353·8-s − 1.89·10-s + 1/4·16-s + 0.917·19-s − 1.34·20-s + 2.50·23-s + 17/5·25-s − 2.22·29-s + 0.176·32-s + 0.648·38-s − 0.948·40-s − 3.04·43-s + 1.76·46-s − 1.75·47-s − 1.85·49-s + 2.40·50-s − 2.47·53-s − 1.57·58-s + 1/8·64-s + 3.42·67-s − 1.63·73-s + 0.458·76-s − 0.670·80-s − 2.15·86-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93312\)    =    \(2^{7} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(5.94965\)
Root analytic conductor: \(1.56179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 93312,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.512741326522107701681952133776, −8.646897306767688973776858314960, −8.177655093885067516195802420137, −7.82723843094092867969941089213, −7.44444168021687832363479010767, −6.72818725632924944067815958116, −6.71508725988629390136097161445, −5.48544965844839209036398212504, −4.81849202265609017039962796294, −4.77709333112371596512170551343, −3.72379428045727412120464814901, −3.38549178369413487864105189864, −3.13977056925804084341234249361, −1.55100613792804333036729509228, 0, 1.55100613792804333036729509228, 3.13977056925804084341234249361, 3.38549178369413487864105189864, 3.72379428045727412120464814901, 4.77709333112371596512170551343, 4.81849202265609017039962796294, 5.48544965844839209036398212504, 6.71508725988629390136097161445, 6.72818725632924944067815958116, 7.44444168021687832363479010767, 7.82723843094092867969941089213, 8.177655093885067516195802420137, 8.646897306767688973776858314960, 9.512741326522107701681952133776

Graph of the $Z$-function along the critical line