Properties

Label 4-84672-1.1-c1e2-0-19
Degree $4$
Conductor $84672$
Sign $1$
Analytic cond. $5.39876$
Root an. cond. $1.52431$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 4·5-s + 6-s − 3·8-s + 9-s + 4·10-s − 12-s + 4·15-s − 16-s + 18-s + 8·19-s − 4·20-s − 3·24-s + 2·25-s + 27-s + 4·29-s + 4·30-s + 5·32-s − 36-s + 8·38-s − 12·40-s − 8·43-s + 4·45-s − 48-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 1.78·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 1.26·10-s − 0.288·12-s + 1.03·15-s − 1/4·16-s + 0.235·18-s + 1.83·19-s − 0.894·20-s − 0.612·24-s + 2/5·25-s + 0.192·27-s + 0.742·29-s + 0.730·30-s + 0.883·32-s − 1/6·36-s + 1.29·38-s − 1.89·40-s − 1.21·43-s + 0.596·45-s − 0.144·48-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84672 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(84672\)    =    \(2^{6} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(5.39876\)
Root analytic conductor: \(1.52431\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 84672,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.981749119\)
\(L(\frac12)\) \(\approx\) \(2.981749119\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$ \( 1 - T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.465508899880048812015346580650, −9.457705101580370517739336150901, −8.900585072204336118527974818427, −8.202224728141808387663165849679, −7.81295430367747747098376616892, −7.02967607454599654192884435004, −6.43796562380819911728572291466, −5.94607665445287604157300008429, −5.46214860425768039190452613646, −5.02709416296405066539370067618, −4.41591285682058366018514470855, −3.50387103718831454239019194187, −3.05422074105458389777226041971, −2.25227517080335123972207039631, −1.36358574500507065097493451168, 1.36358574500507065097493451168, 2.25227517080335123972207039631, 3.05422074105458389777226041971, 3.50387103718831454239019194187, 4.41591285682058366018514470855, 5.02709416296405066539370067618, 5.46214860425768039190452613646, 5.94607665445287604157300008429, 6.43796562380819911728572291466, 7.02967607454599654192884435004, 7.81295430367747747098376616892, 8.202224728141808387663165849679, 8.900585072204336118527974818427, 9.457705101580370517739336150901, 9.465508899880048812015346580650

Graph of the $Z$-function along the critical line