# Properties

 Degree $4$ Conductor $132300$ Sign $1$ Motivic weight $1$ Primitive no Self-dual yes Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + 3-s + 4-s − 2·5-s − 4·7-s + 9-s + 12-s − 2·15-s + 16-s + 12·17-s − 2·20-s − 4·21-s + 3·25-s + 27-s − 4·28-s + 8·35-s + 36-s + 4·37-s − 12·41-s − 8·43-s − 2·45-s + 48-s + 9·49-s + 12·51-s − 2·60-s − 4·63-s + 64-s − 8·67-s + ⋯
 L(s)  = 1 + 0.577·3-s + 1/2·4-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.288·12-s − 0.516·15-s + 1/4·16-s + 2.91·17-s − 0.447·20-s − 0.872·21-s + 3/5·25-s + 0.192·27-s − 0.755·28-s + 1.35·35-s + 1/6·36-s + 0.657·37-s − 1.87·41-s − 1.21·43-s − 0.298·45-s + 0.144·48-s + 9/7·49-s + 1.68·51-s − 0.258·60-s − 0.503·63-s + 1/8·64-s − 0.977·67-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$4$$ Conductor: $$132300$$    =    $$2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}$$ Sign: $1$ Motivic weight: $$1$$ Character: $\chi_{132300} (1, \cdot )$ Sato-Tate group: $\mathrm{SU}(2)$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(4,\ 132300,\ (\ :1/2, 1/2),\ 1)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.634533048$$ $$L(\frac12)$$ $$\approx$$ $$1.634533048$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ $$( 1 - T )( 1 + T )$$
3$C_1$ $$1 - T$$
5$C_1$ $$( 1 + T )^{2}$$
7$C_2$ $$1 + 4 T + p T^{2}$$
good11$C_2$ $$( 1 + p T^{2} )^{2}$$
13$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
17$C_2$ $$( 1 - 6 T + p T^{2} )^{2}$$
19$C_2$ $$( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )$$
23$C_2$ $$( 1 + p T^{2} )^{2}$$
29$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
31$C_2$ $$( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )$$
37$C_2$ $$( 1 - 2 T + p T^{2} )^{2}$$
41$C_2$ $$( 1 + 6 T + p T^{2} )^{2}$$
43$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
47$C_2$ $$( 1 + p T^{2} )^{2}$$
53$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
59$C_2$ $$( 1 + p T^{2} )^{2}$$
61$C_2$ $$( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )$$
67$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
71$C_2$ $$( 1 + p T^{2} )^{2}$$
73$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
79$C_2$ $$( 1 - 8 T + p T^{2} )^{2}$$
83$C_2$ $$( 1 - 12 T + p T^{2} )^{2}$$
89$C_2$ $$( 1 - 18 T + p T^{2} )^{2}$$
97$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
show more
show less
$$L(s) = \displaystyle\prod_{\mathfrak{p}\ \mathrm{bad}} (1- a(\mathfrak{p}) (N\mathfrak{p})^{-s})^{-1} \prod_{\mathfrak{p}\ \mathrm{good}} (1- a(\mathfrak{p}) (N\mathfrak{p})^{-s} + (N\mathfrak{p})^{-2s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.305587122869086271308905422277, −9.044892677337591862441016284913, −8.145462184294923465930650647398, −7.941231322257043910223245152113, −7.51828953604385192982905489512, −6.97913667513999229030385049043, −6.42217617652666865799421983967, −6.03795573121967783311486434379, −5.26570153655431196939565550355, −4.75701556135232590446975582633, −3.63359445531324431774910445192, −3.36585804145949552210873743484, −3.21826656477469471981988966496, −2.10133345305515366205304847130, −0.879817280069523657260066044025, 0.879817280069523657260066044025, 2.10133345305515366205304847130, 3.21826656477469471981988966496, 3.36585804145949552210873743484, 3.63359445531324431774910445192, 4.75701556135232590446975582633, 5.26570153655431196939565550355, 6.03795573121967783311486434379, 6.42217617652666865799421983967, 6.97913667513999229030385049043, 7.51828953604385192982905489512, 7.941231322257043910223245152113, 8.145462184294923465930650647398, 9.044892677337591862441016284913, 9.305587122869086271308905422277