Properties

Label 4-132e2-1.1-c1e2-0-1
Degree $4$
Conductor $17424$
Sign $1$
Analytic cond. $1.11096$
Root an. cond. $1.02665$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·6-s − 2·9-s + 2·11-s − 2·12-s + 8·13-s − 4·16-s + 4·18-s − 4·22-s − 2·23-s − 9·25-s − 16·26-s + 5·27-s + 8·32-s − 2·33-s − 4·36-s + 6·37-s − 8·39-s + 4·44-s + 4·46-s + 16·47-s + 4·48-s − 10·49-s + 18·50-s + 16·52-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s − 2/3·9-s + 0.603·11-s − 0.577·12-s + 2.21·13-s − 16-s + 0.942·18-s − 0.852·22-s − 0.417·23-s − 9/5·25-s − 3.13·26-s + 0.962·27-s + 1.41·32-s − 0.348·33-s − 2/3·36-s + 0.986·37-s − 1.28·39-s + 0.603·44-s + 0.589·46-s + 2.33·47-s + 0.577·48-s − 1.42·49-s + 2.54·50-s + 2.21·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17424 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17424\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1.11096\)
Root analytic conductor: \(1.02665\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17424,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4650245394\)
\(L(\frac12)\) \(\approx\) \(0.4650245394\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3$C_2$ \( 1 + T + p T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21532888591095488055645771466, −10.24006992909568321138419784955, −10.03550909718107888433464868208, −9.314280432061735820103645414759, −8.603539619290756001226038948684, −8.557305878080159620602459979711, −7.85816077117362959855929652794, −7.17975828892938553190702219115, −6.36261389471308870138602900888, −6.05614842101165534491399200306, −5.39918512850282004974717248783, −4.19169950645670655455560288935, −3.65854567503247488502961160345, −2.23405840566606208508614377911, −1.00859600183935355798315238789, 1.00859600183935355798315238789, 2.23405840566606208508614377911, 3.65854567503247488502961160345, 4.19169950645670655455560288935, 5.39918512850282004974717248783, 6.05614842101165534491399200306, 6.36261389471308870138602900888, 7.17975828892938553190702219115, 7.85816077117362959855929652794, 8.557305878080159620602459979711, 8.603539619290756001226038948684, 9.314280432061735820103645414759, 10.03550909718107888433464868208, 10.24006992909568321138419784955, 11.21532888591095488055645771466

Graph of the $Z$-function along the critical line