Properties

Degree 2
Conductor $ 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 4·11-s + 6·13-s + 14-s + 16-s + 4·17-s + 4·22-s + 4·23-s + 6·26-s + 28-s − 3·29-s + 7·31-s + 32-s + 4·34-s − 37-s + 7·41-s − 10·43-s + 4·44-s + 4·46-s − 13·47-s + 49-s + 6·52-s + 6·53-s + 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 1.20·11-s + 1.66·13-s + 0.267·14-s + 1/4·16-s + 0.970·17-s + 0.852·22-s + 0.834·23-s + 1.17·26-s + 0.188·28-s − 0.557·29-s + 1.25·31-s + 0.176·32-s + 0.685·34-s − 0.164·37-s + 1.09·41-s − 1.52·43-s + 0.603·44-s + 0.589·46-s − 1.89·47-s + 1/7·49-s + 0.832·52-s + 0.824·53-s + 0.133·56-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 9450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 9450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(9450\)    =    \(2 \cdot 3^{3} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{9450} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 9450,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $4.818615920$
$L(\frac12)$  $\approx$  $4.818615920$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 5 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.68757692852554563903225305844, −6.69554089760191313845387746215, −6.41365486847878872102506918669, −5.61097153140857345217780313709, −4.96100228411401603798874221601, −4.07093629678414088485831711532, −3.59788578802565999793693719028, −2.85021943672435871550208170622, −1.57808767885349547082784924824, −1.09313779313879282574238443916, 1.09313779313879282574238443916, 1.57808767885349547082784924824, 2.85021943672435871550208170622, 3.59788578802565999793693719028, 4.07093629678414088485831711532, 4.96100228411401603798874221601, 5.61097153140857345217780313709, 6.41365486847878872102506918669, 6.69554089760191313845387746215, 7.68757692852554563903225305844

Graph of the $Z$-function along the critical line