Properties

Degree 2
Conductor $ 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 11-s + 3·13-s − 14-s + 16-s + 7·17-s − 6·19-s − 22-s − 3·23-s − 3·26-s + 28-s − 3·29-s − 7·31-s − 32-s − 7·34-s − 2·37-s + 6·38-s + 8·41-s + 5·43-s + 44-s + 3·46-s + 47-s + 49-s + 3·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 0.301·11-s + 0.832·13-s − 0.267·14-s + 1/4·16-s + 1.69·17-s − 1.37·19-s − 0.213·22-s − 0.625·23-s − 0.588·26-s + 0.188·28-s − 0.557·29-s − 1.25·31-s − 0.176·32-s − 1.20·34-s − 0.328·37-s + 0.973·38-s + 1.24·41-s + 0.762·43-s + 0.150·44-s + 0.442·46-s + 0.145·47-s + 1/7·49-s + 0.416·52-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 9450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 9450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(9450\)    =    \(2 \cdot 3^{3} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{9450} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 9450,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.611882688$
$L(\frac12)$  $\approx$  $1.611882688$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.72184191924715745056140510123, −7.26826171759744277021789902414, −6.24736215579196282124139594229, −5.88826626492015426104897336871, −5.06258223033648556501084118987, −3.96669496654903169934356866679, −3.53837786526680846495879854310, −2.36544926881313302453573122414, −1.62708759035717561481706779252, −0.70176961551650889998448025675, 0.70176961551650889998448025675, 1.62708759035717561481706779252, 2.36544926881313302453573122414, 3.53837786526680846495879854310, 3.96669496654903169934356866679, 5.06258223033648556501084118987, 5.88826626492015426104897336871, 6.24736215579196282124139594229, 7.26826171759744277021789902414, 7.72184191924715745056140510123

Graph of the $Z$-function along the critical line