Properties

Label 4-945e2-1.1-c1e2-0-30
Degree $4$
Conductor $893025$
Sign $1$
Analytic cond. $56.9400$
Root an. cond. $2.74697$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·4-s + 2·5-s − 2·7-s + 3·8-s − 2·10-s + 4·11-s + 5·13-s + 2·14-s + 16-s + 17-s − 3·19-s − 4·20-s − 4·22-s + 13·23-s + 3·25-s − 5·26-s + 4·28-s + 29-s − 2·32-s − 34-s − 4·35-s + 3·38-s + 6·40-s + 5·41-s − 2·43-s − 8·44-s + ⋯
L(s)  = 1  − 0.707·2-s − 4-s + 0.894·5-s − 0.755·7-s + 1.06·8-s − 0.632·10-s + 1.20·11-s + 1.38·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s − 0.688·19-s − 0.894·20-s − 0.852·22-s + 2.71·23-s + 3/5·25-s − 0.980·26-s + 0.755·28-s + 0.185·29-s − 0.353·32-s − 0.171·34-s − 0.676·35-s + 0.486·38-s + 0.948·40-s + 0.780·41-s − 0.304·43-s − 1.20·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 893025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 893025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(893025\)    =    \(3^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(56.9400\)
Root analytic conductor: \(2.74697\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 893025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.560850657\)
\(L(\frac12)\) \(\approx\) \(1.560850657\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
7$C_1$ \( ( 1 + T )^{2} \)
good2$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 4 T + 21 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 5 T + 31 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - T + 33 T^{2} - p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 3 T + 9 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 13 T + 87 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - T - 43 T^{2} - p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 5 T + 57 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 11 T + 135 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 16 T + 137 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 21 T + 221 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 7 T + 85 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - T + 131 T^{2} - p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 10 T + 91 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 9 T + 177 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 8 T + 137 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 167 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 9 T + 153 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04042920231119381932690737441, −9.753766866729512763841275966251, −9.248483680802985052533222341712, −8.959351555927812288297300214900, −8.803396689326762435839335571011, −8.640742040769503528056593481942, −7.70515622230534988845025595180, −7.44588427785290898991507802330, −6.71727343522141888347397982032, −6.44694501343437403443347738583, −6.06620526418433562254995509608, −5.58652582296366593975178811046, −4.84291327957264541803336986666, −4.68200202231709713467618930011, −3.71676745370705737880485753203, −3.70585483573006111685721921414, −2.86809851654240131352188138538, −2.13571733821371376763959408890, −1.03363887182943800339364220791, −0.935176857455447708880149400432, 0.935176857455447708880149400432, 1.03363887182943800339364220791, 2.13571733821371376763959408890, 2.86809851654240131352188138538, 3.70585483573006111685721921414, 3.71676745370705737880485753203, 4.68200202231709713467618930011, 4.84291327957264541803336986666, 5.58652582296366593975178811046, 6.06620526418433562254995509608, 6.44694501343437403443347738583, 6.71727343522141888347397982032, 7.44588427785290898991507802330, 7.70515622230534988845025595180, 8.640742040769503528056593481942, 8.803396689326762435839335571011, 8.959351555927812288297300214900, 9.248483680802985052533222341712, 9.753766866729512763841275966251, 10.04042920231119381932690737441

Graph of the $Z$-function along the critical line