Properties

Label 2-837-93.92-c1-0-32
Degree $2$
Conductor $837$
Sign $-0.933 + 0.359i$
Analytic cond. $6.68347$
Root an. cond. $2.58524$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·2-s − 0.999·4-s − 3.46i·5-s + 2·7-s − 1.73i·8-s − 5.99·10-s + 6·11-s − 3.46i·14-s − 5·16-s − 3·17-s + 4·19-s + 3.46i·20-s − 10.3i·22-s + 6·23-s − 6.99·25-s + ⋯
L(s)  = 1  − 1.22i·2-s − 0.499·4-s − 1.54i·5-s + 0.755·7-s − 0.612i·8-s − 1.89·10-s + 1.80·11-s − 0.925i·14-s − 1.25·16-s − 0.727·17-s + 0.917·19-s + 0.774i·20-s − 2.21i·22-s + 1.25·23-s − 1.39·25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.359i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.933 + 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(837\)    =    \(3^{3} \cdot 31\)
Sign: $-0.933 + 0.359i$
Analytic conductor: \(6.68347\)
Root analytic conductor: \(2.58524\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{837} (836, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 837,\ (\ :1/2),\ -0.933 + 0.359i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.352889 - 1.89923i\)
\(L(\frac12)\) \(\approx\) \(0.352889 - 1.89923i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 + (-2 - 5.19i)T \)
good2 \( 1 + 1.73iT - 2T^{2} \)
5 \( 1 + 3.46iT - 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 - 6T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 3.46iT - 41T^{2} \)
43 \( 1 - 5.19iT - 43T^{2} \)
47 \( 1 - 5.19iT - 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 - 1.73iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 14T + 67T^{2} \)
71 \( 1 + 1.73iT - 71T^{2} \)
73 \( 1 + 10.3iT - 73T^{2} \)
79 \( 1 - 15.5iT - 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + 15T + 89T^{2} \)
97 \( 1 - 11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645096010915611562991231968182, −9.201509492856631165075593383078, −8.581271984992672113834928231185, −7.35974939544665156116596977847, −6.27137472878734127817790021153, −4.90382737578548711706686072427, −4.37290338351873368521713976011, −3.27424464561895398607380194715, −1.61666644346413186719296289506, −1.12103771812187319926668138464, 1.91912924591334761207820451529, 3.27920306185655880357948539361, 4.44845375668621941487040205351, 5.64765497079532599249654896213, 6.50035462255486572978613942605, 7.05491958347309582255858622265, 7.64138108027541638058023826948, 8.767674385179784012514615145752, 9.476605558325649063804558491292, 10.73552018675074430738703220946

Graph of the $Z$-function along the critical line