Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 13 \cdot 103 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2.61·5-s + 6-s − 0.977·7-s − 8-s + 9-s + 2.61·10-s − 0.240·11-s − 12-s + 13-s + 0.977·14-s + 2.61·15-s + 16-s − 4.91·17-s − 18-s − 1.97·19-s − 2.61·20-s + 0.977·21-s + 0.240·22-s − 0.244·23-s + 24-s + 1.84·25-s − 26-s − 27-s − 0.977·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.17·5-s + 0.408·6-s − 0.369·7-s − 0.353·8-s + 0.333·9-s + 0.827·10-s − 0.0725·11-s − 0.288·12-s + 0.277·13-s + 0.261·14-s + 0.675·15-s + 0.250·16-s − 1.19·17-s − 0.235·18-s − 0.453·19-s − 0.585·20-s + 0.213·21-s + 0.0513·22-s − 0.0510·23-s + 0.204·24-s + 0.369·25-s − 0.196·26-s − 0.192·27-s − 0.184·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 8034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(8034\)    =    \(2 \cdot 3 \cdot 13 \cdot 103\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{8034} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 8034,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;13,\;103\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;13,\;103\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 - T \)
103 \( 1 - T \)
good5 \( 1 + 2.61T + 5T^{2} \)
7 \( 1 + 0.977T + 7T^{2} \)
11 \( 1 + 0.240T + 11T^{2} \)
17 \( 1 + 4.91T + 17T^{2} \)
19 \( 1 + 1.97T + 19T^{2} \)
23 \( 1 + 0.244T + 23T^{2} \)
29 \( 1 - 8.09T + 29T^{2} \)
31 \( 1 + 7.15T + 31T^{2} \)
37 \( 1 - 5.41T + 37T^{2} \)
41 \( 1 - 10.7T + 41T^{2} \)
43 \( 1 + 5.03T + 43T^{2} \)
47 \( 1 - 9.26T + 47T^{2} \)
53 \( 1 - 9.79T + 53T^{2} \)
59 \( 1 + 7.05T + 59T^{2} \)
61 \( 1 - 3.55T + 61T^{2} \)
67 \( 1 + 14.2T + 67T^{2} \)
71 \( 1 - 9.42T + 71T^{2} \)
73 \( 1 - 0.976T + 73T^{2} \)
79 \( 1 + 8.87T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 + 0.490T + 89T^{2} \)
97 \( 1 - 14.7T + 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.56840468531176288075754375194, −6.83212103589310422302483872374, −6.33399012445370351077253595210, −5.53969200797583123293927968179, −4.46160173985057713102616376876, −4.05073596685526856900119702179, −3.05069653403504079397863069218, −2.13215641186555478645179106778, −0.866625426477179672904931116611, 0, 0.866625426477179672904931116611, 2.13215641186555478645179106778, 3.05069653403504079397863069218, 4.05073596685526856900119702179, 4.46160173985057713102616376876, 5.53969200797583123293927968179, 6.33399012445370351077253595210, 6.83212103589310422302483872374, 7.56840468531176288075754375194

Graph of the $Z$-function along the critical line