Properties

Label 2-8022-1.1-c1-0-106
Degree $2$
Conductor $8022$
Sign $1$
Analytic cond. $64.0559$
Root an. cond. $8.00349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 1.51·5-s + 6-s + 7-s + 8-s + 9-s + 1.51·10-s + 4.90·11-s + 12-s − 0.556·13-s + 14-s + 1.51·15-s + 16-s − 5.11·17-s + 18-s − 3.89·19-s + 1.51·20-s + 21-s + 4.90·22-s + 3.11·23-s + 24-s − 2.71·25-s − 0.556·26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.675·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.477·10-s + 1.47·11-s + 0.288·12-s − 0.154·13-s + 0.267·14-s + 0.390·15-s + 0.250·16-s − 1.24·17-s + 0.235·18-s − 0.894·19-s + 0.337·20-s + 0.218·21-s + 1.04·22-s + 0.648·23-s + 0.204·24-s − 0.543·25-s − 0.109·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8022 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8022 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8022\)    =    \(2 \cdot 3 \cdot 7 \cdot 191\)
Sign: $1$
Analytic conductor: \(64.0559\)
Root analytic conductor: \(8.00349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8022,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.551500786\)
\(L(\frac12)\) \(\approx\) \(5.551500786\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
191 \( 1 + T \)
good5 \( 1 - 1.51T + 5T^{2} \)
11 \( 1 - 4.90T + 11T^{2} \)
13 \( 1 + 0.556T + 13T^{2} \)
17 \( 1 + 5.11T + 17T^{2} \)
19 \( 1 + 3.89T + 19T^{2} \)
23 \( 1 - 3.11T + 23T^{2} \)
29 \( 1 - 2.39T + 29T^{2} \)
31 \( 1 - 1.73T + 31T^{2} \)
37 \( 1 + 4.13T + 37T^{2} \)
41 \( 1 - 9.93T + 41T^{2} \)
43 \( 1 - 0.618T + 43T^{2} \)
47 \( 1 - 7.74T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 - 1.08T + 59T^{2} \)
61 \( 1 + 3.75T + 61T^{2} \)
67 \( 1 + 6.58T + 67T^{2} \)
71 \( 1 + 0.477T + 71T^{2} \)
73 \( 1 - 11.7T + 73T^{2} \)
79 \( 1 - 9.42T + 79T^{2} \)
83 \( 1 - 9.21T + 83T^{2} \)
89 \( 1 - 12.6T + 89T^{2} \)
97 \( 1 - 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74960512849555698768320025868, −6.91855425052005401628332364692, −6.47439175364680231493325877445, −5.81778267793169761998641958526, −4.88042444812411292895959768176, −4.20669511733685076452075588870, −3.71604313368512360705304650340, −2.51262333418454686608523445471, −2.07759788637468851155298704579, −1.08163778619166860158613554722, 1.08163778619166860158613554722, 2.07759788637468851155298704579, 2.51262333418454686608523445471, 3.71604313368512360705304650340, 4.20669511733685076452075588870, 4.88042444812411292895959768176, 5.81778267793169761998641958526, 6.47439175364680231493325877445, 6.91855425052005401628332364692, 7.74960512849555698768320025868

Graph of the $Z$-function along the critical line