Properties

Label 6-8016e3-1.1-c1e3-0-1
Degree $6$
Conductor $515078148096$
Sign $1$
Analytic cond. $262243.$
Root an. cond. $8.00050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 6·5-s + 4·7-s + 6·9-s + 4·11-s + 6·13-s + 18·15-s − 4·19-s + 12·21-s + 24·23-s + 13·25-s + 10·27-s − 14·29-s + 4·31-s + 12·33-s + 24·35-s − 10·37-s + 18·39-s + 12·41-s + 8·43-s + 36·45-s + 3·49-s − 8·53-s + 24·55-s − 12·57-s − 4·59-s + 2·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 2.68·5-s + 1.51·7-s + 2·9-s + 1.20·11-s + 1.66·13-s + 4.64·15-s − 0.917·19-s + 2.61·21-s + 5.00·23-s + 13/5·25-s + 1.92·27-s − 2.59·29-s + 0.718·31-s + 2.08·33-s + 4.05·35-s − 1.64·37-s + 2.88·39-s + 1.87·41-s + 1.21·43-s + 5.36·45-s + 3/7·49-s − 1.09·53-s + 3.23·55-s − 1.58·57-s − 0.520·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 167^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 167^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 167^{3}\)
Sign: $1$
Analytic conductor: \(262243.\)
Root analytic conductor: \(8.00050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 3^{3} \cdot 167^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(53.76323575\)
\(L(\frac12)\) \(\approx\) \(53.76323575\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{3} \)
167$C_1$ \( ( 1 + T )^{3} \)
good5$S_4\times C_2$ \( 1 - 6 T + 23 T^{2} - 62 T^{3} + 23 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 - 4 T + 13 T^{2} - 40 T^{3} + 13 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 4 T + 29 T^{2} - 68 T^{3} + 29 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{3} \)
17$S_4\times C_2$ \( 1 + 15 T^{2} + 54 T^{3} + 15 p T^{4} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 4 T + 41 T^{2} + 120 T^{3} + 41 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{3} \)
29$S_4\times C_2$ \( 1 + 14 T + 115 T^{2} + 660 T^{3} + 115 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 4 T + 77 T^{2} - 216 T^{3} + 77 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 10 T + 131 T^{2} + 732 T^{3} + 131 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 12 T + 51 T^{2} - 66 T^{3} + 51 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 8 T + 113 T^{2} - 558 T^{3} + 113 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 57 T^{2} + 268 T^{3} + 57 p T^{4} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 8 T + 115 T^{2} + 558 T^{3} + 115 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 4 T + 145 T^{2} + 504 T^{3} + 145 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 2 T + 51 T^{2} - 248 T^{3} + 51 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 26 T + 413 T^{2} - 4038 T^{3} + 413 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 16 T + 149 T^{2} - 1232 T^{3} + 149 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 22 T + 319 T^{2} - 3316 T^{3} + 319 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 10 T + 137 T^{2} + 1302 T^{3} + 137 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 4 T - 7 T^{2} + 760 T^{3} - 7 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 6 T + 119 T^{2} + 148 T^{3} + 119 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 6 T + 159 T^{2} - 1316 T^{3} + 159 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.85315062006866494661823473901, −6.63127350501877074041447868908, −6.49987320077356781486333119939, −6.49728512445957312250585750867, −5.92762422296789811980698165848, −5.66384670890274165497363500711, −5.53414944520892194423321004693, −5.27209331414096875043652863469, −5.04482415157639593257895431197, −4.94824005482558571566438195811, −4.41931166333082150945384555645, −4.37020740599241993160347859143, −3.94981684215197929446527605346, −3.55774403277155744355347226955, −3.46612934121373470598499432855, −3.42133564502810411654575998935, −2.73654434619133744962715104978, −2.61328585197223690846052515925, −2.35690546945413262201974087124, −1.93595892610575022875278059804, −1.79651353102340875069989990423, −1.73110281227054776356746292803, −1.11684699911834793097319554518, −1.03638863439279505037005614229, −0.880743890051077503912602771728, 0.880743890051077503912602771728, 1.03638863439279505037005614229, 1.11684699911834793097319554518, 1.73110281227054776356746292803, 1.79651353102340875069989990423, 1.93595892610575022875278059804, 2.35690546945413262201974087124, 2.61328585197223690846052515925, 2.73654434619133744962715104978, 3.42133564502810411654575998935, 3.46612934121373470598499432855, 3.55774403277155744355347226955, 3.94981684215197929446527605346, 4.37020740599241993160347859143, 4.41931166333082150945384555645, 4.94824005482558571566438195811, 5.04482415157639593257895431197, 5.27209331414096875043652863469, 5.53414944520892194423321004693, 5.66384670890274165497363500711, 5.92762422296789811980698165848, 6.49728512445957312250585750867, 6.49987320077356781486333119939, 6.63127350501877074041447868908, 6.85315062006866494661823473901

Graph of the $Z$-function along the critical line