Properties

Label 4-2e6-1.1-c15e2-0-0
Degree $4$
Conductor $64$
Sign $1$
Analytic cond. $130.313$
Root an. cond. $3.37868$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.07e3·3-s − 1.40e5·5-s + 1.26e5·7-s + 7.49e6·9-s + 2.06e7·11-s + 4.99e8·13-s + 5.71e8·15-s + 3.13e9·17-s − 4.74e8·19-s − 5.13e8·21-s − 4.07e10·23-s − 1.54e10·25-s − 5.19e10·27-s + 3.52e10·29-s − 3.43e10·31-s − 8.42e10·33-s − 1.76e10·35-s + 8.70e11·37-s − 2.03e12·39-s + 9.00e11·41-s + 5.00e11·43-s − 1.05e12·45-s + 1.20e12·47-s − 9.29e12·49-s − 1.27e13·51-s + 1.23e12·53-s − 2.90e12·55-s + ⋯
L(s)  = 1  − 1.07·3-s − 0.802·5-s + 0.0579·7-s + 0.522·9-s + 0.320·11-s + 2.20·13-s + 0.863·15-s + 1.85·17-s − 0.121·19-s − 0.0622·21-s − 2.49·23-s − 0.507·25-s − 0.955·27-s + 0.379·29-s − 0.224·31-s − 0.344·33-s − 0.0465·35-s + 1.50·37-s − 2.37·39-s + 0.721·41-s + 0.280·43-s − 0.419·45-s + 0.347·47-s − 1.95·49-s − 1.99·51-s + 0.144·53-s − 0.256·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+15/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $1$
Analytic conductor: \(130.313\)
Root analytic conductor: \(3.37868\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 64,\ (\ :15/2, 15/2),\ 1)\)

Particular Values

\(L(8)\) \(\approx\) \(1.204574062\)
\(L(\frac12)\) \(\approx\) \(1.204574062\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( 1 + 4072 T + 336530 p^{3} T^{2} + 4072 p^{15} T^{3} + p^{30} T^{4} \)
5$D_{4}$ \( 1 + 28052 p T + 1406582414 p^{2} T^{2} + 28052 p^{16} T^{3} + p^{30} T^{4} \)
7$D_{4}$ \( 1 - 126192 T + 1329524863586 p T^{2} - 126192 p^{15} T^{3} + p^{30} T^{4} \)
11$D_{4}$ \( 1 - 20682632 T + 122319220218178 p T^{2} - 20682632 p^{15} T^{3} + p^{30} T^{4} \)
13$D_{4}$ \( 1 - 38446652 p T + 974516755366782 p^{2} T^{2} - 38446652 p^{16} T^{3} + p^{30} T^{4} \)
17$D_{4}$ \( 1 - 3139516900 T + 7453966489546885286 T^{2} - 3139516900 p^{15} T^{3} + p^{30} T^{4} \)
19$D_{4}$ \( 1 + 474668552 T + 28477910697117701574 T^{2} + 474668552 p^{15} T^{3} + p^{30} T^{4} \)
23$D_{4}$ \( 1 + 40776002608 T + \)\(94\!\cdots\!30\)\( T^{2} + 40776002608 p^{15} T^{3} + p^{30} T^{4} \)
29$D_{4}$ \( 1 - 35253157356 T + \)\(85\!\cdots\!82\)\( T^{2} - 35253157356 p^{15} T^{3} + p^{30} T^{4} \)
31$D_{4}$ \( 1 + 34389193280 T + \)\(24\!\cdots\!02\)\( T^{2} + 34389193280 p^{15} T^{3} + p^{30} T^{4} \)
37$D_{4}$ \( 1 - 870228564444 T + \)\(75\!\cdots\!70\)\( T^{2} - 870228564444 p^{15} T^{3} + p^{30} T^{4} \)
41$D_{4}$ \( 1 - 900085452084 T - \)\(19\!\cdots\!34\)\( T^{2} - 900085452084 p^{15} T^{3} + p^{30} T^{4} \)
43$D_{4}$ \( 1 - 500707998536 T + \)\(30\!\cdots\!38\)\( T^{2} - 500707998536 p^{15} T^{3} + p^{30} T^{4} \)
47$D_{4}$ \( 1 - 1208059119264 T + \)\(21\!\cdots\!10\)\( T^{2} - 1208059119264 p^{15} T^{3} + p^{30} T^{4} \)
53$D_{4}$ \( 1 - 1236734202044 T + \)\(11\!\cdots\!98\)\( T^{2} - 1236734202044 p^{15} T^{3} + p^{30} T^{4} \)
59$D_{4}$ \( 1 - 14441975905064 T + \)\(76\!\cdots\!22\)\( T^{2} - 14441975905064 p^{15} T^{3} + p^{30} T^{4} \)
61$D_{4}$ \( 1 - 18336303417260 T + \)\(12\!\cdots\!02\)\( T^{2} - 18336303417260 p^{15} T^{3} + p^{30} T^{4} \)
67$D_{4}$ \( 1 + 76601421514856 T + \)\(47\!\cdots\!70\)\( T^{2} + 76601421514856 p^{15} T^{3} + p^{30} T^{4} \)
71$D_{4}$ \( 1 + 145877173886864 T + \)\(16\!\cdots\!26\)\( T^{2} + 145877173886864 p^{15} T^{3} + p^{30} T^{4} \)
73$D_{4}$ \( 1 + 26417269924108 T + \)\(10\!\cdots\!30\)\( T^{2} + 26417269924108 p^{15} T^{3} + p^{30} T^{4} \)
79$D_{4}$ \( 1 - 257907833388128 T + \)\(71\!\cdots\!94\)\( T^{2} - 257907833388128 p^{15} T^{3} + p^{30} T^{4} \)
83$D_{4}$ \( 1 - 255512806582648 T + \)\(10\!\cdots\!90\)\( T^{2} - 255512806582648 p^{15} T^{3} + p^{30} T^{4} \)
89$D_{4}$ \( 1 + 719794611712812 T + \)\(38\!\cdots\!34\)\( T^{2} + 719794611712812 p^{15} T^{3} + p^{30} T^{4} \)
97$D_{4}$ \( 1 - 407635590418756 T - \)\(29\!\cdots\!30\)\( T^{2} - 407635590418756 p^{15} T^{3} + p^{30} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.98743405112429646909491601924, −17.93141819570888901536804707999, −16.53119729755688797946361142611, −16.28672563384899712417247302567, −15.66908827177854488616155138602, −14.58320711481446394725029693025, −13.75529720571998686522206014545, −12.77475607150245383652151371922, −11.72765672763874089319535058503, −11.59420983772793419292327645457, −10.57462376958295016153351411067, −9.674250391342427018888484476418, −8.262384828822491896994491633370, −7.67793198394861137419437457875, −6.03372693114748030212806869321, −5.90039996848995902934037329616, −4.19861867695133090937414233451, −3.54756491121400270853524861383, −1.54117036825025129883850161570, −0.56824712043044151201863432086, 0.56824712043044151201863432086, 1.54117036825025129883850161570, 3.54756491121400270853524861383, 4.19861867695133090937414233451, 5.90039996848995902934037329616, 6.03372693114748030212806869321, 7.67793198394861137419437457875, 8.262384828822491896994491633370, 9.674250391342427018888484476418, 10.57462376958295016153351411067, 11.59420983772793419292327645457, 11.72765672763874089319535058503, 12.77475607150245383652151371922, 13.75529720571998686522206014545, 14.58320711481446394725029693025, 15.66908827177854488616155138602, 16.28672563384899712417247302567, 16.53119729755688797946361142611, 17.93141819570888901536804707999, 17.98743405112429646909491601924

Graph of the $Z$-function along the critical line