Properties

Label 2-2e3-1.1-c13-0-1
Degree $2$
Conductor $8$
Sign $1$
Analytic cond. $8.57847$
Root an. cond. $2.92890$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.22e3·3-s + 3.07e4·5-s − 3.41e5·7-s + 3.35e6·9-s + 9.18e6·11-s − 9.32e6·13-s + 6.82e7·15-s − 8.60e6·17-s − 2.27e8·19-s − 7.59e8·21-s + 5.58e8·23-s − 2.78e8·25-s + 3.91e9·27-s − 4.09e9·29-s + 2.31e8·31-s + 2.04e10·33-s − 1.04e10·35-s − 2.41e10·37-s − 2.07e10·39-s − 1.37e10·41-s + 1.90e9·43-s + 1.02e11·45-s − 2.27e10·47-s + 1.98e10·49-s − 1.91e10·51-s + 7.19e10·53-s + 2.82e11·55-s + ⋯
L(s)  = 1  + 1.76·3-s + 0.878·5-s − 1.09·7-s + 2.10·9-s + 1.56·11-s − 0.535·13-s + 1.54·15-s − 0.0864·17-s − 1.10·19-s − 1.93·21-s + 0.786·23-s − 0.227·25-s + 1.94·27-s − 1.27·29-s + 0.0468·31-s + 2.75·33-s − 0.964·35-s − 1.54·37-s − 0.943·39-s − 0.453·41-s + 0.0460·43-s + 1.84·45-s − 0.307·47-s + 0.204·49-s − 0.152·51-s + 0.445·53-s + 1.37·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8\)    =    \(2^{3}\)
Sign: $1$
Analytic conductor: \(8.57847\)
Root analytic conductor: \(2.92890\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(3.057493019\)
\(L(\frac12)\) \(\approx\) \(3.057493019\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 2.22e3T + 1.59e6T^{2} \)
5 \( 1 - 3.07e4T + 1.22e9T^{2} \)
7 \( 1 + 3.41e5T + 9.68e10T^{2} \)
11 \( 1 - 9.18e6T + 3.45e13T^{2} \)
13 \( 1 + 9.32e6T + 3.02e14T^{2} \)
17 \( 1 + 8.60e6T + 9.90e15T^{2} \)
19 \( 1 + 2.27e8T + 4.20e16T^{2} \)
23 \( 1 - 5.58e8T + 5.04e17T^{2} \)
29 \( 1 + 4.09e9T + 1.02e19T^{2} \)
31 \( 1 - 2.31e8T + 2.44e19T^{2} \)
37 \( 1 + 2.41e10T + 2.43e20T^{2} \)
41 \( 1 + 1.37e10T + 9.25e20T^{2} \)
43 \( 1 - 1.90e9T + 1.71e21T^{2} \)
47 \( 1 + 2.27e10T + 5.46e21T^{2} \)
53 \( 1 - 7.19e10T + 2.60e22T^{2} \)
59 \( 1 - 3.71e11T + 1.04e23T^{2} \)
61 \( 1 + 3.48e11T + 1.61e23T^{2} \)
67 \( 1 - 8.75e11T + 5.48e23T^{2} \)
71 \( 1 - 1.10e11T + 1.16e24T^{2} \)
73 \( 1 - 2.15e12T + 1.67e24T^{2} \)
79 \( 1 + 3.20e11T + 4.66e24T^{2} \)
83 \( 1 - 1.63e12T + 8.87e24T^{2} \)
89 \( 1 + 3.21e12T + 2.19e25T^{2} \)
97 \( 1 + 3.93e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.06146995850490333695964030123, −16.98880467838786691709757214886, −15.10450496132002133661116418687, −13.99239012874510052413366315131, −12.84418621935524834943199937424, −9.784037035096331188508543616076, −8.928015093795377593754458071171, −6.77693736343220153026919877280, −3.61491182189509783853227786530, −1.98847987996368312376160847260, 1.98847987996368312376160847260, 3.61491182189509783853227786530, 6.77693736343220153026919877280, 8.928015093795377593754458071171, 9.784037035096331188508543616076, 12.84418621935524834943199937424, 13.99239012874510052413366315131, 15.10450496132002133661116418687, 16.98880467838786691709757214886, 19.06146995850490333695964030123

Graph of the $Z$-function along the critical line