Properties

Label 4-2e6-1.1-c11e2-0-0
Degree $4$
Conductor $64$
Sign $1$
Analytic cond. $37.7824$
Root an. cond. $2.47926$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 56·3-s + 7.86e3·5-s + 9.10e4·7-s + 9.45e4·9-s + 1.59e5·11-s + 1.05e6·13-s + 4.40e5·15-s + 1.43e6·17-s − 2.18e7·19-s + 5.09e6·21-s + 3.58e7·23-s + 1.30e7·25-s + 2.03e7·27-s − 2.28e8·29-s + 6.47e7·31-s + 8.90e6·33-s + 7.16e8·35-s + 7.55e7·37-s + 5.88e7·39-s + 1.20e9·41-s − 4.55e7·43-s + 7.43e8·45-s − 1.22e9·47-s + 3.05e9·49-s + 8.01e7·51-s − 3.80e9·53-s + 1.25e9·55-s + ⋯
L(s)  = 1  + 0.133·3-s + 1.12·5-s + 2.04·7-s + 0.533·9-s + 0.297·11-s + 0.784·13-s + 0.149·15-s + 0.244·17-s − 2.02·19-s + 0.272·21-s + 1.16·23-s + 0.267·25-s + 0.272·27-s − 2.07·29-s + 0.406·31-s + 0.0396·33-s + 2.30·35-s + 0.179·37-s + 0.104·39-s + 1.61·41-s − 0.0472·43-s + 0.600·45-s − 0.781·47-s + 1.54·49-s + 0.0325·51-s − 1.25·53-s + 0.335·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $1$
Analytic conductor: \(37.7824\)
Root analytic conductor: \(2.47926\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 64,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(3.617700063\)
\(L(\frac12)\) \(\approx\) \(3.617700063\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( 1 - 56 T - 10154 p^{2} T^{2} - 56 p^{11} T^{3} + p^{22} T^{4} \)
5$D_{4}$ \( 1 - 7868 T + 9768358 p T^{2} - 7868 p^{11} T^{3} + p^{22} T^{4} \)
7$D_{4}$ \( 1 - 13008 p T + 106936526 p^{2} T^{2} - 13008 p^{12} T^{3} + p^{22} T^{4} \)
11$D_{4}$ \( 1 - 159080 T + 362536063286 T^{2} - 159080 p^{11} T^{3} + p^{22} T^{4} \)
13$D_{4}$ \( 1 - 1050476 T + 3458956762062 T^{2} - 1050476 p^{11} T^{3} + p^{22} T^{4} \)
17$D_{4}$ \( 1 - 1430884 T + 16748384809766 T^{2} - 1430884 p^{11} T^{3} + p^{22} T^{4} \)
19$D_{4}$ \( 1 + 21866600 T + 343123710088422 T^{2} + 21866600 p^{11} T^{3} + p^{22} T^{4} \)
23$D_{4}$ \( 1 - 35806736 T + 1952928132896462 T^{2} - 35806736 p^{11} T^{3} + p^{22} T^{4} \)
29$D_{4}$ \( 1 + 228827700 T + 35907977791027054 T^{2} + 228827700 p^{11} T^{3} + p^{22} T^{4} \)
31$D_{4}$ \( 1 - 64722112 T + 51498184379920062 T^{2} - 64722112 p^{11} T^{3} + p^{22} T^{4} \)
37$D_{4}$ \( 1 - 75558780 T + 354292341022528382 T^{2} - 75558780 p^{11} T^{3} + p^{22} T^{4} \)
41$D_{4}$ \( 1 - 1201214196 T + 1274442257818453270 T^{2} - 1201214196 p^{11} T^{3} + p^{22} T^{4} \)
43$D_{4}$ \( 1 + 45519832 T + 42144714696540642 p T^{2} + 45519832 p^{11} T^{3} + p^{22} T^{4} \)
47$D_{4}$ \( 1 + 1229079264 T + 5024390553242310430 T^{2} + 1229079264 p^{11} T^{3} + p^{22} T^{4} \)
53$D_{4}$ \( 1 + 3808549924 T + 16648234587904299038 T^{2} + 3808549924 p^{11} T^{3} + p^{22} T^{4} \)
59$D_{4}$ \( 1 + 6012926584 T + 61066799326040273366 T^{2} + 6012926584 p^{11} T^{3} + p^{22} T^{4} \)
61$D_{4}$ \( 1 - 9789792908 T + \)\(10\!\cdots\!42\)\( T^{2} - 9789792908 p^{11} T^{3} + p^{22} T^{4} \)
67$D_{4}$ \( 1 - 14703095224 T + 95414710392374126214 T^{2} - 14703095224 p^{11} T^{3} + p^{22} T^{4} \)
71$D_{4}$ \( 1 - 4319991088 T + \)\(28\!\cdots\!82\)\( T^{2} - 4319991088 p^{11} T^{3} + p^{22} T^{4} \)
73$D_{4}$ \( 1 - 11055639476 T + \)\(65\!\cdots\!62\)\( T^{2} - 11055639476 p^{11} T^{3} + p^{22} T^{4} \)
79$D_{4}$ \( 1 - 51957623264 T + \)\(14\!\cdots\!78\)\( T^{2} - 51957623264 p^{11} T^{3} + p^{22} T^{4} \)
83$D_{4}$ \( 1 + 108227975912 T + \)\(54\!\cdots\!06\)\( T^{2} + 108227975912 p^{11} T^{3} + p^{22} T^{4} \)
89$D_{4}$ \( 1 - 71188291860 T + \)\(31\!\cdots\!82\)\( T^{2} - 71188291860 p^{11} T^{3} + p^{22} T^{4} \)
97$D_{4}$ \( 1 + 1699807676 T + \)\(12\!\cdots\!50\)\( T^{2} + 1699807676 p^{11} T^{3} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.30544545042308772004367752215, −18.57913133689240242696212205161, −17.95345200473325722223254389685, −17.24218712515558814080863642007, −16.89805231847574628656940167216, −15.54658248286138922761859664205, −14.61595725547875557414239965610, −14.41466031698629084608828705285, −13.28591047825691912110311778114, −12.69630395048473575487384499676, −11.08391566084478147030094759415, −11.03166347722003463094264542079, −9.642730463467278955859532244080, −8.680053842169399595947915295669, −7.81375328005576902502204728461, −6.43516722769812940935743573577, −5.26998016440216648596384796212, −4.19563354026436177146760365618, −2.07267544589330045403968738810, −1.35166993005988851330411790268, 1.35166993005988851330411790268, 2.07267544589330045403968738810, 4.19563354026436177146760365618, 5.26998016440216648596384796212, 6.43516722769812940935743573577, 7.81375328005576902502204728461, 8.680053842169399595947915295669, 9.642730463467278955859532244080, 11.03166347722003463094264542079, 11.08391566084478147030094759415, 12.69630395048473575487384499676, 13.28591047825691912110311778114, 14.41466031698629084608828705285, 14.61595725547875557414239965610, 15.54658248286138922761859664205, 16.89805231847574628656940167216, 17.24218712515558814080863642007, 17.95345200473325722223254389685, 18.57913133689240242696212205161, 19.30544545042308772004367752215

Graph of the $Z$-function along the critical line