Properties

Degree 2
Conductor $ 3 \cdot 211 $
Sign $0.446 + 0.895i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.951 + 1.30i)2-s + (−0.309 + 0.951i)3-s + (−0.500 − 1.53i)4-s + (−0.951 + 0.309i)5-s + (−0.951 − 1.30i)6-s + (−0.809 + 0.587i)7-s + (0.951 + 0.309i)8-s + (−0.809 − 0.587i)9-s + (0.499 − 1.53i)10-s + (−0.587 + 0.190i)11-s + 1.61·12-s + (0.809 − 0.587i)13-s − 1.61i·14-s − 0.999i·15-s + (0.363 + 0.5i)17-s + (1.53 − 0.499i)18-s + ⋯
L(s)  = 1  + (−0.951 + 1.30i)2-s + (−0.309 + 0.951i)3-s + (−0.500 − 1.53i)4-s + (−0.951 + 0.309i)5-s + (−0.951 − 1.30i)6-s + (−0.809 + 0.587i)7-s + (0.951 + 0.309i)8-s + (−0.809 − 0.587i)9-s + (0.499 − 1.53i)10-s + (−0.587 + 0.190i)11-s + 1.61·12-s + (0.809 − 0.587i)13-s − 1.61i·14-s − 0.999i·15-s + (0.363 + 0.5i)17-s + (1.53 − 0.499i)18-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 633 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 633 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(633\)    =    \(3 \cdot 211\)
\( \varepsilon \)  =  $0.446 + 0.895i$
motivic weight  =  \(0\)
character  :  $\chi_{633} (107, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 633,\ (\ :0),\ 0.446 + 0.895i)$
$L(\frac{1}{2})$  $\approx$  $0.09472167740$
$L(\frac12)$  $\approx$  $0.09472167740$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;211\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{3,\;211\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 + (0.309 - 0.951i)T \)
211 \( 1 + (0.809 - 0.587i)T \)
good2 \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \)
5 \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \)
7 \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \)
11 \( 1 + (0.587 - 0.190i)T + (0.809 - 0.587i)T^{2} \)
13 \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \)
17 \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \)
19 \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \)
23 \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \)
29 \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \)
31 \( 1 + 1.61T + T^{2} \)
37 \( 1 + (-0.809 - 0.587i)T^{2} \)
41 \( 1 + (-0.587 + 0.190i)T + (0.809 - 0.587i)T^{2} \)
43 \( 1 + T + T^{2} \)
47 \( 1 + (-0.951 - 1.30i)T + (-0.309 + 0.951i)T^{2} \)
53 \( 1 + (0.809 + 0.587i)T^{2} \)
59 \( 1 + (0.809 - 0.587i)T^{2} \)
61 \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \)
67 \( 1 + T^{2} \)
71 \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \)
73 \( 1 + T + T^{2} \)
79 \( 1 + (-0.809 + 0.587i)T^{2} \)
83 \( 1 + (1.53 - 0.5i)T + (0.809 - 0.587i)T^{2} \)
89 \( 1 + (0.587 + 0.809i)T + (-0.309 + 0.951i)T^{2} \)
97 \( 1 + (-0.809 - 0.587i)T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.06291833365488716342549071906, −10.44324574274730308274733578560, −9.585680576052833534863196810606, −8.794121877682874254339482328145, −8.100076895885464279706001652146, −7.24242943046823131002994962952, −6.00508205727527462721263560845, −5.72917750467731670980410122139, −4.19844806842361299171218274205, −3.14362762540509556208084181619, 0.15209118831223742791347645294, 1.59174564648898276770946992627, 3.04199242463974218999989252205, 3.90665175574649274161024980520, 5.53076015300476129758409409629, 6.93443245193915815259938092980, 7.56536694804222088400507362827, 8.578712545250614003506487262374, 9.136160487413364408047098611631, 10.33118384676363256000864028863

Graph of the $Z$-function along the critical line