Properties

Label 8-600e4-1.1-c1e4-0-12
Degree $8$
Conductor $129600000000$
Sign $1$
Analytic cond. $526.882$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·4-s + 3·9-s + 8·12-s + 12·16-s − 4·19-s − 10·27-s − 12·36-s + 40·43-s − 24·48-s + 28·49-s + 8·57-s − 32·64-s + 28·67-s + 4·73-s + 16·76-s + 20·81-s + 40·97-s + 40·108-s − 14·121-s + 127-s − 80·129-s + 131-s + 137-s + 139-s + 36·144-s − 56·147-s + ⋯
L(s)  = 1  − 1.15·3-s − 2·4-s + 9-s + 2.30·12-s + 3·16-s − 0.917·19-s − 1.92·27-s − 2·36-s + 6.09·43-s − 3.46·48-s + 4·49-s + 1.05·57-s − 4·64-s + 3.42·67-s + 0.468·73-s + 1.83·76-s + 20/9·81-s + 4.06·97-s + 3.84·108-s − 1.27·121-s + 0.0887·127-s − 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3·144-s − 4.61·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(526.882\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.073571789\)
\(L(\frac12)\) \(\approx\) \(1.073571789\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2^2$ \( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T^{2} )^{4} \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 2 T - 69 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 235 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 235 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68198681095650743273350124269, −7.60135815847901278460459604886, −7.23452383498496106765582038210, −6.95604292129274155874022633704, −6.81609947955012021188071711995, −6.39494562166137588659466204729, −6.02114194011809143698325143771, −5.83492678157565143534345987904, −5.68472129577490533157520714386, −5.60323674393187027476246252548, −5.42104755747051346739970064997, −4.92337970826282915247093531644, −4.60436787677055530276936602256, −4.54193481752522462504601853870, −4.11122225182346979569168121830, −4.07720853240452779954542107476, −3.81000522356168692752371828353, −3.54569085142648114638685325028, −3.13996614076996600979206298663, −2.37672987597234901674568978512, −2.36544737574726336041860802344, −2.04832283639156490265104378621, −1.05974494818868922471617885363, −0.805908420692261918825522403684, −0.58663908602624407808599996061, 0.58663908602624407808599996061, 0.805908420692261918825522403684, 1.05974494818868922471617885363, 2.04832283639156490265104378621, 2.36544737574726336041860802344, 2.37672987597234901674568978512, 3.13996614076996600979206298663, 3.54569085142648114638685325028, 3.81000522356168692752371828353, 4.07720853240452779954542107476, 4.11122225182346979569168121830, 4.54193481752522462504601853870, 4.60436787677055530276936602256, 4.92337970826282915247093531644, 5.42104755747051346739970064997, 5.60323674393187027476246252548, 5.68472129577490533157520714386, 5.83492678157565143534345987904, 6.02114194011809143698325143771, 6.39494562166137588659466204729, 6.81609947955012021188071711995, 6.95604292129274155874022633704, 7.23452383498496106765582038210, 7.60135815847901278460459604886, 7.68198681095650743273350124269

Graph of the $Z$-function along the critical line