# Properties

 Degree 2 Conductor $2 \cdot 3 \cdot 11 \cdot 61$ Sign $1$ Motivic weight 1 Primitive yes Self-dual yes Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + 2-s + 3-s + 4-s + 0.268·5-s + 6-s + 3.42·7-s + 8-s + 9-s + 0.268·10-s + 11-s + 12-s + 1.26·13-s + 3.42·14-s + 0.268·15-s + 16-s + 0.867·17-s + 18-s + 6.18·19-s + 0.268·20-s + 3.42·21-s + 22-s − 8.86·23-s + 24-s − 4.92·25-s + 1.26·26-s + 27-s + 3.42·28-s + ⋯
 L(s)  = 1 + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.120·5-s + 0.408·6-s + 1.29·7-s + 0.353·8-s + 0.333·9-s + 0.0850·10-s + 0.301·11-s + 0.288·12-s + 0.351·13-s + 0.915·14-s + 0.0694·15-s + 0.250·16-s + 0.210·17-s + 0.235·18-s + 1.41·19-s + 0.0601·20-s + 0.747·21-s + 0.213·22-s − 1.84·23-s + 0.204·24-s − 0.985·25-s + 0.248·26-s + 0.192·27-s + 0.647·28-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s)=\mathstrut & 4026 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned} \Lambda(s)=\mathstrut & 4026 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$4026$$    =    $$2 \cdot 3 \cdot 11 \cdot 61$$ $$\varepsilon$$ = $1$ motivic weight = $$1$$ character : $\chi_{4026} (1, \cdot )$ primitive : yes self-dual : yes analytic rank = 0 Selberg data = $(2,\ 4026,\ (\ :1/2),\ 1)$ $L(1)$ $\approx$ $4.896520278$ $L(\frac12)$ $\approx$ $4.896520278$ $L(\frac{3}{2})$ not available $L(1)$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$ where, for $p \notin \{2,\;3,\;11,\;61\}$, $F_p(T) = 1 - a_p T + p T^2 .$If $p \in \{2,\;3,\;11,\;61\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 $$1 - T$$
3 $$1 - T$$
11 $$1 - T$$
61 $$1 + T$$
good5 $$1 - 0.268T + 5T^{2}$$
7 $$1 - 3.42T + 7T^{2}$$
13 $$1 - 1.26T + 13T^{2}$$
17 $$1 - 0.867T + 17T^{2}$$
19 $$1 - 6.18T + 19T^{2}$$
23 $$1 + 8.86T + 23T^{2}$$
29 $$1 - 1.57T + 29T^{2}$$
31 $$1 + 6.59T + 31T^{2}$$
37 $$1 - 8.55T + 37T^{2}$$
41 $$1 - 3.44T + 41T^{2}$$
43 $$1 - 12.3T + 43T^{2}$$
47 $$1 - 5.99T + 47T^{2}$$
53 $$1 - 4.13T + 53T^{2}$$
59 $$1 + 13.3T + 59T^{2}$$
67 $$1 + 0.380T + 67T^{2}$$
71 $$1 + 10.4T + 71T^{2}$$
73 $$1 + 2.36T + 73T^{2}$$
79 $$1 + 8.37T + 79T^{2}$$
83 $$1 - 2.32T + 83T^{2}$$
89 $$1 + 11.6T + 89T^{2}$$
97 $$1 + 11.5T + 97T^{2}$$
\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}