Properties

Label 2-38-19.8-c8-0-6
Degree $2$
Conductor $38$
Sign $-0.180 - 0.983i$
Analytic cond. $15.4803$
Root an. cond. $3.93451$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (9.79 + 5.65i)2-s + (131. + 75.7i)3-s + (63.9 + 110. i)4-s + (−110. + 191. i)5-s + (856. + 1.48e3i)6-s − 253.·7-s + 1.44e3i·8-s + (8.18e3 + 1.41e4i)9-s + (−2.16e3 + 1.25e3i)10-s − 1.23e4·11-s + 1.93e4i·12-s + (2.03e4 − 1.17e4i)13-s + (−2.48e3 − 1.43e3i)14-s + (−2.90e4 + 1.67e4i)15-s + (−8.19e3 + 1.41e4i)16-s + (6.25e4 − 1.08e5i)17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (1.61 + 0.934i)3-s + (0.249 + 0.433i)4-s + (−0.177 + 0.306i)5-s + (0.661 + 1.14i)6-s − 0.105·7-s + 0.353i·8-s + (1.24 + 2.16i)9-s + (−0.216 + 0.125i)10-s − 0.842·11-s + 0.934i·12-s + (0.711 − 0.410i)13-s + (−0.0646 − 0.0373i)14-s + (−0.573 + 0.331i)15-s + (−0.125 + 0.216i)16-s + (0.748 − 1.29i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.180 - 0.983i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.180 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.180 - 0.983i$
Analytic conductor: \(15.4803\)
Root analytic conductor: \(3.93451\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :4),\ -0.180 - 0.983i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.66037 + 3.19327i\)
\(L(\frac12)\) \(\approx\) \(2.66037 + 3.19327i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-9.79 - 5.65i)T \)
19 \( 1 + (1.17e5 + 5.54e4i)T \)
good3 \( 1 + (-131. - 75.7i)T + (3.28e3 + 5.68e3i)T^{2} \)
5 \( 1 + (110. - 191. i)T + (-1.95e5 - 3.38e5i)T^{2} \)
7 \( 1 + 253.T + 5.76e6T^{2} \)
11 \( 1 + 1.23e4T + 2.14e8T^{2} \)
13 \( 1 + (-2.03e4 + 1.17e4i)T + (4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 + (-6.25e4 + 1.08e5i)T + (-3.48e9 - 6.04e9i)T^{2} \)
23 \( 1 + (-1.14e5 - 1.97e5i)T + (-3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-8.56e4 + 4.94e4i)T + (2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + 9.41e5iT - 8.52e11T^{2} \)
37 \( 1 - 1.64e6iT - 3.51e12T^{2} \)
41 \( 1 + (-1.75e6 - 1.01e6i)T + (3.99e12 + 6.91e12i)T^{2} \)
43 \( 1 + (-2.44e6 + 4.22e6i)T + (-5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (2.54e6 + 4.40e6i)T + (-1.19e13 + 2.06e13i)T^{2} \)
53 \( 1 + (-9.97e6 + 5.75e6i)T + (3.11e13 - 5.39e13i)T^{2} \)
59 \( 1 + (-1.15e6 - 6.68e5i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (4.57e6 + 7.92e6i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (-6.56e6 + 3.79e6i)T + (2.03e14 - 3.51e14i)T^{2} \)
71 \( 1 + (1.08e7 + 6.23e6i)T + (3.22e14 + 5.59e14i)T^{2} \)
73 \( 1 + (-1.68e6 + 2.92e6i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (-6.48e7 - 3.74e7i)T + (7.58e14 + 1.31e15i)T^{2} \)
83 \( 1 + 3.87e7T + 2.25e15T^{2} \)
89 \( 1 + (4.49e7 - 2.59e7i)T + (1.96e15 - 3.40e15i)T^{2} \)
97 \( 1 + (1.49e8 + 8.64e7i)T + (3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01924005699501119834723136487, −13.82452780100625686207367201084, −13.09936986672318518738432910509, −11.03582794569073747394813176602, −9.737212016964631297871550582209, −8.435427821926963693131537108911, −7.37216635936028500566736388394, −5.09237933673993034892045128570, −3.61420581537418775404647851812, −2.62923539320669765888669023845, 1.32129509559846266303817056372, 2.68123237331527303387288177161, 4.02272661846293099763864019324, 6.36490103959709317773696645638, 7.905877513440527087054571810081, 8.843456095973283213599248670280, 10.49177618404819967604078358086, 12.52562184522687176381098381256, 12.89377336392590244694510076824, 14.14678774723032921545631529044

Graph of the $Z$-function along the critical line