Properties

Label 2-38-19.8-c8-0-5
Degree $2$
Conductor $38$
Sign $-0.511 + 0.859i$
Analytic cond. $15.4803$
Root an. cond. $3.93451$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−9.79 − 5.65i)2-s + (−127. − 73.6i)3-s + (63.9 + 110. i)4-s + (381. − 660. i)5-s + (833. + 1.44e3i)6-s + 2.76e3·7-s − 1.44e3i·8-s + (7.58e3 + 1.31e4i)9-s + (−7.46e3 + 4.31e3i)10-s + 1.18e4·11-s − 1.88e4i·12-s + (4.22e4 − 2.43e4i)13-s + (−2.70e4 − 1.56e4i)14-s + (−9.73e4 + 5.61e4i)15-s + (−8.19e3 + 1.41e4i)16-s + (2.00e4 − 3.47e4i)17-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (−1.57 − 0.909i)3-s + (0.249 + 0.433i)4-s + (0.609 − 1.05i)5-s + (0.643 + 1.11i)6-s + 1.15·7-s − 0.353i·8-s + (1.15 + 2.00i)9-s + (−0.746 + 0.431i)10-s + 0.812·11-s − 0.909i·12-s + (1.47 − 0.853i)13-s + (−0.704 − 0.406i)14-s + (−1.92 + 1.10i)15-s + (−0.125 + 0.216i)16-s + (0.240 − 0.416i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.511 + 0.859i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.511 + 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.511 + 0.859i$
Analytic conductor: \(15.4803\)
Root analytic conductor: \(3.93451\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :4),\ -0.511 + 0.859i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.572379 - 1.00662i\)
\(L(\frac12)\) \(\approx\) \(0.572379 - 1.00662i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (9.79 + 5.65i)T \)
19 \( 1 + (5.22e4 + 1.19e5i)T \)
good3 \( 1 + (127. + 73.6i)T + (3.28e3 + 5.68e3i)T^{2} \)
5 \( 1 + (-381. + 660. i)T + (-1.95e5 - 3.38e5i)T^{2} \)
7 \( 1 - 2.76e3T + 5.76e6T^{2} \)
11 \( 1 - 1.18e4T + 2.14e8T^{2} \)
13 \( 1 + (-4.22e4 + 2.43e4i)T + (4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 + (-2.00e4 + 3.47e4i)T + (-3.48e9 - 6.04e9i)T^{2} \)
23 \( 1 + (-2.61e5 - 4.52e5i)T + (-3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-3.68e5 + 2.13e5i)T + (2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 - 2.24e5iT - 8.52e11T^{2} \)
37 \( 1 + 1.20e6iT - 3.51e12T^{2} \)
41 \( 1 + (-2.87e6 - 1.66e6i)T + (3.99e12 + 6.91e12i)T^{2} \)
43 \( 1 + (9.34e4 - 1.61e5i)T + (-5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (-2.98e6 - 5.17e6i)T + (-1.19e13 + 2.06e13i)T^{2} \)
53 \( 1 + (-2.46e6 + 1.42e6i)T + (3.11e13 - 5.39e13i)T^{2} \)
59 \( 1 + (1.06e7 + 6.13e6i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (9.48e6 + 1.64e7i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (2.63e7 - 1.52e7i)T + (2.03e14 - 3.51e14i)T^{2} \)
71 \( 1 + (7.06e6 + 4.08e6i)T + (3.22e14 + 5.59e14i)T^{2} \)
73 \( 1 + (-1.13e7 + 1.95e7i)T + (-4.03e14 - 6.98e14i)T^{2} \)
79 \( 1 + (-8.18e6 - 4.72e6i)T + (7.58e14 + 1.31e15i)T^{2} \)
83 \( 1 + 3.04e7T + 2.25e15T^{2} \)
89 \( 1 + (-6.05e6 + 3.49e6i)T + (1.96e15 - 3.40e15i)T^{2} \)
97 \( 1 + (-8.69e7 - 5.02e7i)T + (3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55636901925450392694876029795, −12.69553598376592273780506842706, −11.51065753376641874204352161905, −10.90032979693788807375294343151, −9.048891954376255319460963026140, −7.65912179284202313003037186736, −6.06588861819375984432033133808, −4.92381483732612637997310940127, −1.42040949789237196274148725741, −0.941802251666644627116947969675, 1.29877215463356525214375286711, 4.29257304433525016189222046265, 5.93357877076666141670253508358, 6.65967497179685859274622281453, 8.850350187276451879639065618278, 10.43941406150007800002874241964, 10.86295408458445009177238386005, 11.89861636084493978882197764252, 14.25832960700805220800230245779, 15.07373503303966249850185490601

Graph of the $Z$-function along the critical line