Properties

Label 2-38-19.7-c7-0-11
Degree $2$
Conductor $38$
Sign $-0.141 + 0.989i$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 + 6.92i)2-s + (−4.67 − 8.09i)3-s + (−31.9 + 55.4i)4-s + (−40.1 − 69.5i)5-s + (37.3 − 64.7i)6-s − 541.·7-s − 511.·8-s + (1.04e3 − 1.81e3i)9-s + (321. − 556. i)10-s − 6.30e3·11-s + 598.·12-s + (4.43e3 − 7.68e3i)13-s + (−2.16e3 − 3.75e3i)14-s + (−375. + 650. i)15-s + (−2.04e3 − 3.54e3i)16-s + (−1.69e4 − 2.93e4i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.0999 − 0.173i)3-s + (−0.249 + 0.433i)4-s + (−0.143 − 0.248i)5-s + (0.0706 − 0.122i)6-s − 0.597·7-s − 0.353·8-s + (0.480 − 0.831i)9-s + (0.101 − 0.175i)10-s − 1.42·11-s + 0.0999·12-s + (0.560 − 0.970i)13-s + (−0.211 − 0.365i)14-s + (−0.0287 + 0.0497i)15-s + (−0.125 − 0.216i)16-s + (−0.835 − 1.44i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.141 + 0.989i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.141 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.141 + 0.989i$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ -0.141 + 0.989i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.568575 - 0.655873i\)
\(L(\frac12)\) \(\approx\) \(0.568575 - 0.655873i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 - 6.92i)T \)
19 \( 1 + (-2.10e3 - 2.98e4i)T \)
good3 \( 1 + (4.67 + 8.09i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (40.1 + 69.5i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + 541.T + 8.23e5T^{2} \)
11 \( 1 + 6.30e3T + 1.94e7T^{2} \)
13 \( 1 + (-4.43e3 + 7.68e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + (1.69e4 + 2.93e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
23 \( 1 + (-3.96e4 + 6.87e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (1.02e5 - 1.78e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + 2.19e5T + 2.75e10T^{2} \)
37 \( 1 + 2.65e5T + 9.49e10T^{2} \)
41 \( 1 + (-2.67e5 - 4.63e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (-4.23e5 - 7.33e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (7.15e4 - 1.23e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (8.75e4 - 1.51e5i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (5.72e5 + 9.91e5i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-1.05e6 + 1.82e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-1.28e6 + 2.22e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (1.55e6 + 2.68e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + (1.53e6 + 2.65e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-2.46e6 - 4.27e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 - 7.31e6T + 2.71e13T^{2} \)
89 \( 1 + (-3.41e6 + 5.92e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-2.97e6 - 5.16e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58149366637265615071951483616, −12.99672999141249580013441622757, −12.62594613974053609824698677531, −10.76276609010330054775798092351, −9.229400233654460747599426207673, −7.77573922583502466297771015402, −6.46965473045715781424831775448, −5.01001210911286402326677470124, −3.16888310036975452016936884718, −0.32972433904153613300330676778, 2.11318374335025961698933099866, 3.88220364418299905856719058912, 5.46037362611668318756954733701, 7.24378801719394721497092304790, 9.056570065522515980519003003883, 10.52327652757960675488760165200, 11.21290905288060123111690155109, 13.03111337261605836647367298566, 13.41903024735717664212870224010, 15.21421271581293161688091570793

Graph of the $Z$-function along the critical line