Properties

Label 2-38-19.11-c7-0-11
Degree $2$
Conductor $38$
Sign $-0.745 + 0.666i$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 − 6.92i)2-s + (39.6 − 68.6i)3-s + (−31.9 − 55.4i)4-s + (99.4 − 172. i)5-s + (−317. − 549. i)6-s + 1.59e3·7-s − 511.·8-s + (−2.05e3 − 3.55e3i)9-s + (−795. − 1.37e3i)10-s − 1.68e3·11-s − 5.07e3·12-s + (7.59e3 + 1.31e4i)13-s + (6.36e3 − 1.10e4i)14-s + (−7.89e3 − 1.36e4i)15-s + (−2.04e3 + 3.54e3i)16-s + (−1.07e4 + 1.86e4i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.848 − 1.46i)3-s + (−0.249 − 0.433i)4-s + (0.355 − 0.616i)5-s + (−0.599 − 1.03i)6-s + 1.75·7-s − 0.353·8-s + (−0.938 − 1.62i)9-s + (−0.251 − 0.435i)10-s − 0.380·11-s − 0.848·12-s + (0.958 + 1.66i)13-s + (0.619 − 1.07i)14-s + (−0.603 − 1.04i)15-s + (−0.125 + 0.216i)16-s + (−0.531 + 0.920i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.745 + 0.666i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.745 + 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.745 + 0.666i$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ -0.745 + 0.666i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.13760 - 2.98028i\)
\(L(\frac12)\) \(\approx\) \(1.13760 - 2.98028i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 + 6.92i)T \)
19 \( 1 + (2.59e4 - 1.47e4i)T \)
good3 \( 1 + (-39.6 + 68.6i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + (-99.4 + 172. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 - 1.59e3T + 8.23e5T^{2} \)
11 \( 1 + 1.68e3T + 1.94e7T^{2} \)
13 \( 1 + (-7.59e3 - 1.31e4i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + (1.07e4 - 1.86e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
23 \( 1 + (3.63e4 + 6.29e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-1.49e4 - 2.58e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 5.36e4T + 2.75e10T^{2} \)
37 \( 1 - 2.36e5T + 9.49e10T^{2} \)
41 \( 1 + (3.45e5 - 5.97e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-2.20e5 + 3.82e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 + (1.82e4 + 3.15e4i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + (3.43e5 + 5.94e5i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 + (4.14e5 - 7.17e5i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (7.35e5 + 1.27e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (1.86e6 + 3.22e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-1.17e6 + 2.03e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 + (5.58e5 - 9.66e5i)T + (-5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (5.35e5 - 9.26e5i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + 6.69e6T + 2.71e13T^{2} \)
89 \( 1 + (1.38e6 + 2.40e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (8.42e5 - 1.45e6i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.04150700492789165754189674578, −13.19742615923465929318267990871, −12.14577711807194245456944580772, −11.01511926187915212911573265170, −8.801055700482688948684624175423, −8.168948749076937456121456601408, −6.35850642852092845152481057442, −4.40906354016818359500965029872, −1.99601157744214582847555339045, −1.44521307340803983067578243129, 2.74680093844361424052457815283, 4.34441190203401847822843602970, 5.49451487022802512902071704115, 7.83985435583529260317010710585, 8.717505098478409603249620368721, 10.32568497726349087653074174319, 11.18877886948464519171072320954, 13.51869865757509403727315493259, 14.35810902863450902845157597500, 15.24408053423684779882599178516

Graph of the $Z$-function along the critical line