Properties

Label 2-38-19.11-c7-0-6
Degree $2$
Conductor $38$
Sign $0.990 + 0.135i$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4 + 6.92i)2-s + (−45.4 + 78.6i)3-s + (−31.9 − 55.4i)4-s + (149. − 259. i)5-s + (−363. − 629. i)6-s − 708.·7-s + 511.·8-s + (−3.03e3 − 5.25e3i)9-s + (1.19e3 + 2.07e3i)10-s + 952.·11-s + 5.81e3·12-s + (4.02e3 + 6.97e3i)13-s + (2.83e3 − 4.90e3i)14-s + (1.36e4 + 2.35e4i)15-s + (−2.04e3 + 3.54e3i)16-s + (9.35e3 − 1.62e4i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.971 + 1.68i)3-s + (−0.249 − 0.433i)4-s + (0.535 − 0.928i)5-s + (−0.687 − 1.18i)6-s − 0.780·7-s + 0.353·8-s + (−1.38 − 2.40i)9-s + (0.378 + 0.656i)10-s + 0.215·11-s + 0.971·12-s + (0.508 + 0.880i)13-s + (0.275 − 0.477i)14-s + (1.04 + 1.80i)15-s + (−0.125 + 0.216i)16-s + (0.461 − 0.800i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.135i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.990 + 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.990 + 0.135i$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ 0.990 + 0.135i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.612342 - 0.0418252i\)
\(L(\frac12)\) \(\approx\) \(0.612342 - 0.0418252i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4 - 6.92i)T \)
19 \( 1 + (2.80e4 + 1.02e4i)T \)
good3 \( 1 + (45.4 - 78.6i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + (-149. + 259. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + 708.T + 8.23e5T^{2} \)
11 \( 1 - 952.T + 1.94e7T^{2} \)
13 \( 1 + (-4.02e3 - 6.97e3i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + (-9.35e3 + 1.62e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
23 \( 1 + (-1.20e4 - 2.08e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (1.05e5 + 1.83e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 1.72e5T + 2.75e10T^{2} \)
37 \( 1 + 2.73e5T + 9.49e10T^{2} \)
41 \( 1 + (-4.04e5 + 7.00e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-3.84e5 + 6.66e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 + (-8.82e4 - 1.52e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + (-2.52e5 - 4.37e5i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 + (1.77e5 - 3.07e5i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (1.05e6 + 1.82e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (3.25e5 + 5.63e5i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-7.56e5 + 1.30e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 + (-3.04e6 + 5.27e6i)T + (-5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (-1.25e6 + 2.17e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + 7.94e6T + 2.71e13T^{2} \)
89 \( 1 + (-4.58e6 - 7.93e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (2.20e6 - 3.81e6i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.35447897824143080978368823756, −13.80921300031491231009659133739, −12.11447172354684761425108736149, −10.74262432952878298035416898417, −9.480387326215172165703944241604, −9.066850423935615037068480352927, −6.37884466130461876642588431568, −5.32908191323379501553900604102, −4.08543523403469281443084391887, −0.38394128180282753280913173423, 1.26011374193958150886702058712, 2.78123844054864875865859779031, 5.93192986200137552464760184374, 6.78290825076589555155993965123, 8.197802190141215844226637313966, 10.32154343278683787938422712898, 11.12765979027717880375050732116, 12.57210549952785277182010849110, 13.04651609851581827754031269867, 14.37680732594492814928184736437

Graph of the $Z$-function along the critical line