Properties

Label 2-38-19.8-c6-0-7
Degree $2$
Conductor $38$
Sign $0.658 - 0.752i$
Analytic cond. $8.74205$
Root an. cond. $2.95669$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.89 + 2.82i)2-s + (29.9 + 17.2i)3-s + (15.9 + 27.7i)4-s + (48.9 − 84.8i)5-s + (97.7 + 169. i)6-s + 374.·7-s + 181. i·8-s + (232. + 403. i)9-s + (480. − 277. i)10-s − 766.·11-s + 1.10e3i·12-s + (−1.99e3 + 1.15e3i)13-s + (1.83e3 + 1.05e3i)14-s + (2.93e3 − 1.69e3i)15-s + (−512. + 886. i)16-s + (1.07e3 − 1.86e3i)17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (1.10 + 0.640i)3-s + (0.249 + 0.433i)4-s + (0.391 − 0.678i)5-s + (0.452 + 0.783i)6-s + 1.09·7-s + 0.353i·8-s + (0.319 + 0.553i)9-s + (0.480 − 0.277i)10-s − 0.575·11-s + 0.640i·12-s + (−0.910 + 0.525i)13-s + (0.668 + 0.385i)14-s + (0.869 − 0.501i)15-s + (−0.125 + 0.216i)16-s + (0.219 − 0.380i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.658 - 0.752i$
Analytic conductor: \(8.74205\)
Root analytic conductor: \(2.95669\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :3),\ 0.658 - 0.752i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.21060 + 1.45564i\)
\(L(\frac12)\) \(\approx\) \(3.21060 + 1.45564i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4.89 - 2.82i)T \)
19 \( 1 + (-1.56e3 - 6.67e3i)T \)
good3 \( 1 + (-29.9 - 17.2i)T + (364.5 + 631. i)T^{2} \)
5 \( 1 + (-48.9 + 84.8i)T + (-7.81e3 - 1.35e4i)T^{2} \)
7 \( 1 - 374.T + 1.17e5T^{2} \)
11 \( 1 + 766.T + 1.77e6T^{2} \)
13 \( 1 + (1.99e3 - 1.15e3i)T + (2.41e6 - 4.18e6i)T^{2} \)
17 \( 1 + (-1.07e3 + 1.86e3i)T + (-1.20e7 - 2.09e7i)T^{2} \)
23 \( 1 + (7.67e3 + 1.32e4i)T + (-7.40e7 + 1.28e8i)T^{2} \)
29 \( 1 + (1.65e4 - 9.53e3i)T + (2.97e8 - 5.15e8i)T^{2} \)
31 \( 1 + 4.99e4iT - 8.87e8T^{2} \)
37 \( 1 + 3.25e4iT - 2.56e9T^{2} \)
41 \( 1 + (3.58e4 + 2.06e4i)T + (2.37e9 + 4.11e9i)T^{2} \)
43 \( 1 + (1.13e4 - 1.95e4i)T + (-3.16e9 - 5.47e9i)T^{2} \)
47 \( 1 + (1.46e4 + 2.54e4i)T + (-5.38e9 + 9.33e9i)T^{2} \)
53 \( 1 + (-4.36e4 + 2.52e4i)T + (1.10e10 - 1.91e10i)T^{2} \)
59 \( 1 + (-2.68e5 - 1.55e5i)T + (2.10e10 + 3.65e10i)T^{2} \)
61 \( 1 + (-1.50e5 - 2.61e5i)T + (-2.57e10 + 4.46e10i)T^{2} \)
67 \( 1 + (13.3 - 7.70i)T + (4.52e10 - 7.83e10i)T^{2} \)
71 \( 1 + (-3.15e5 - 1.82e5i)T + (6.40e10 + 1.10e11i)T^{2} \)
73 \( 1 + (6.10e4 - 1.05e5i)T + (-7.56e10 - 1.31e11i)T^{2} \)
79 \( 1 + (6.44e5 + 3.71e5i)T + (1.21e11 + 2.10e11i)T^{2} \)
83 \( 1 + 1.00e6T + 3.26e11T^{2} \)
89 \( 1 + (-1.66e5 + 9.63e4i)T + (2.48e11 - 4.30e11i)T^{2} \)
97 \( 1 + (-1.37e6 - 7.95e5i)T + (4.16e11 + 7.21e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75509914156291608574787433681, −14.39095110944941648265399095964, −13.13703408998880218784667301697, −11.76763299284450268975368287168, −9.985083234586467684946076790200, −8.714048147956349191016476012558, −7.66490362458587391922066306140, −5.36299585715767632681148527692, −4.16280282031106688076181677884, −2.25454233562225832459568722139, 1.86488723470750523902349089654, 3.01303481610322638773998526851, 5.17063457437932088409383338906, 7.14614377177390291189585953656, 8.260076854431244430521435632472, 10.01516950658872019004970327195, 11.31499215915150179621982044106, 12.76623178162506274582606568966, 13.85591346884665207265790205587, 14.49294917284954313757854574668

Graph of the $Z$-function along the critical line