Properties

Label 2-38-1.1-c5-0-4
Degree $2$
Conductor $38$
Sign $1$
Analytic cond. $6.09458$
Root an. cond. $2.46872$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 18.3·3-s + 16·4-s + 42.3·5-s + 73.5·6-s − 127.·7-s + 64·8-s + 95.2·9-s + 169.·10-s + 381.·11-s + 294.·12-s − 726.·13-s − 508.·14-s + 778.·15-s + 256·16-s + 1.05e3·17-s + 381.·18-s − 361·19-s + 677.·20-s − 2.34e3·21-s + 1.52e3·22-s − 1.56e3·23-s + 1.17e3·24-s − 1.33e3·25-s − 2.90e3·26-s − 2.71e3·27-s − 2.03e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.17·3-s + 0.5·4-s + 0.757·5-s + 0.834·6-s − 0.981·7-s + 0.353·8-s + 0.392·9-s + 0.535·10-s + 0.951·11-s + 0.589·12-s − 1.19·13-s − 0.693·14-s + 0.893·15-s + 0.250·16-s + 0.888·17-s + 0.277·18-s − 0.229·19-s + 0.378·20-s − 1.15·21-s + 0.672·22-s − 0.617·23-s + 0.417·24-s − 0.426·25-s − 0.843·26-s − 0.717·27-s − 0.490·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $1$
Analytic conductor: \(6.09458\)
Root analytic conductor: \(2.46872\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.275038737\)
\(L(\frac12)\) \(\approx\) \(3.275038737\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
19 \( 1 + 361T \)
good3 \( 1 - 18.3T + 243T^{2} \)
5 \( 1 - 42.3T + 3.12e3T^{2} \)
7 \( 1 + 127.T + 1.68e4T^{2} \)
11 \( 1 - 381.T + 1.61e5T^{2} \)
13 \( 1 + 726.T + 3.71e5T^{2} \)
17 \( 1 - 1.05e3T + 1.41e6T^{2} \)
23 \( 1 + 1.56e3T + 6.43e6T^{2} \)
29 \( 1 - 740.T + 2.05e7T^{2} \)
31 \( 1 + 7.81e3T + 2.86e7T^{2} \)
37 \( 1 + 457.T + 6.93e7T^{2} \)
41 \( 1 + 4.25e3T + 1.15e8T^{2} \)
43 \( 1 - 2.33e4T + 1.47e8T^{2} \)
47 \( 1 - 1.19e4T + 2.29e8T^{2} \)
53 \( 1 - 1.79e4T + 4.18e8T^{2} \)
59 \( 1 - 4.77e4T + 7.14e8T^{2} \)
61 \( 1 - 8.73e3T + 8.44e8T^{2} \)
67 \( 1 + 1.79e3T + 1.35e9T^{2} \)
71 \( 1 + 4.57e4T + 1.80e9T^{2} \)
73 \( 1 + 7.38e4T + 2.07e9T^{2} \)
79 \( 1 - 6.17e4T + 3.07e9T^{2} \)
83 \( 1 - 8.25e4T + 3.93e9T^{2} \)
89 \( 1 + 6.67e3T + 5.58e9T^{2} \)
97 \( 1 - 1.63e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77001991605762824003177925530, −14.21471844646158847241960606128, −13.16610802949862589190098847049, −12.06871797728980103274202703439, −10.03083258933875487474879828714, −9.141146289656077346440226666474, −7.35902114747356138444374497877, −5.84528092309695604651295984623, −3.70490709866047953101249732251, −2.29921338885678843843024970314, 2.29921338885678843843024970314, 3.70490709866047953101249732251, 5.84528092309695604651295984623, 7.35902114747356138444374497877, 9.141146289656077346440226666474, 10.03083258933875487474879828714, 12.06871797728980103274202703439, 13.16610802949862589190098847049, 14.21471844646158847241960606128, 14.77001991605762824003177925530

Graph of the $Z$-function along the critical line