Properties

Label 2-38-19.7-c9-0-10
Degree $2$
Conductor $38$
Sign $0.997 + 0.0668i$
Analytic cond. $19.5713$
Root an. cond. $4.42395$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8 + 13.8i)2-s + (37.7 + 65.4i)3-s + (−127. + 221. i)4-s + (−802. − 1.39e3i)5-s + (−604. + 1.04e3i)6-s + 1.58e3·7-s − 4.09e3·8-s + (6.98e3 − 1.21e4i)9-s + (1.28e4 − 2.22e4i)10-s + 2.29e4·11-s − 1.93e4·12-s + (7.40e4 − 1.28e5i)13-s + (1.26e4 + 2.19e4i)14-s + (6.06e4 − 1.05e5i)15-s + (−3.27e4 − 5.67e4i)16-s + (2.27e5 + 3.93e5i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.269 + 0.466i)3-s + (−0.249 + 0.433i)4-s + (−0.574 − 0.995i)5-s + (−0.190 + 0.329i)6-s + 0.249·7-s − 0.353·8-s + (0.355 − 0.615i)9-s + (0.406 − 0.703i)10-s + 0.471·11-s − 0.269·12-s + (0.719 − 1.24i)13-s + (0.0882 + 0.152i)14-s + (0.309 − 0.535i)15-s + (−0.125 − 0.216i)16-s + (0.659 + 1.14i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0668i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0668i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.997 + 0.0668i$
Analytic conductor: \(19.5713\)
Root analytic conductor: \(4.42395\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :9/2),\ 0.997 + 0.0668i)\)

Particular Values

\(L(5)\) \(\approx\) \(2.28924 - 0.0766431i\)
\(L(\frac12)\) \(\approx\) \(2.28924 - 0.0766431i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-8 - 13.8i)T \)
19 \( 1 + (5.62e5 - 8.25e4i)T \)
good3 \( 1 + (-37.7 - 65.4i)T + (-9.84e3 + 1.70e4i)T^{2} \)
5 \( 1 + (802. + 1.39e3i)T + (-9.76e5 + 1.69e6i)T^{2} \)
7 \( 1 - 1.58e3T + 4.03e7T^{2} \)
11 \( 1 - 2.29e4T + 2.35e9T^{2} \)
13 \( 1 + (-7.40e4 + 1.28e5i)T + (-5.30e9 - 9.18e9i)T^{2} \)
17 \( 1 + (-2.27e5 - 3.93e5i)T + (-5.92e10 + 1.02e11i)T^{2} \)
23 \( 1 + (-1.04e6 + 1.80e6i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + (1.07e6 - 1.86e6i)T + (-7.25e12 - 1.25e13i)T^{2} \)
31 \( 1 - 3.63e6T + 2.64e13T^{2} \)
37 \( 1 - 2.01e7T + 1.29e14T^{2} \)
41 \( 1 + (7.28e6 + 1.26e7i)T + (-1.63e14 + 2.83e14i)T^{2} \)
43 \( 1 + (1.16e7 + 2.01e7i)T + (-2.51e14 + 4.35e14i)T^{2} \)
47 \( 1 + (-1.58e7 + 2.74e7i)T + (-5.59e14 - 9.69e14i)T^{2} \)
53 \( 1 + (2.60e7 - 4.51e7i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (8.43e7 + 1.46e8i)T + (-4.33e15 + 7.50e15i)T^{2} \)
61 \( 1 + (3.37e7 - 5.84e7i)T + (-5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (5.27e7 - 9.14e7i)T + (-1.36e16 - 2.35e16i)T^{2} \)
71 \( 1 + (5.27e7 + 9.13e7i)T + (-2.29e16 + 3.97e16i)T^{2} \)
73 \( 1 + (-4.53e7 - 7.85e7i)T + (-2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (5.02e7 + 8.70e7i)T + (-5.99e16 + 1.03e17i)T^{2} \)
83 \( 1 - 5.84e8T + 1.86e17T^{2} \)
89 \( 1 + (-2.88e8 + 4.99e8i)T + (-1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + (-4.47e8 - 7.74e8i)T + (-3.80e17 + 6.58e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69506134943003583183241215920, −12.96103280152915206677580855974, −12.30452847468184005072453956897, −10.51416959851942206203741045367, −8.845414402199875488396169025252, −8.109962561353364301110714064489, −6.25635613899340578638270540043, −4.66087091529358545117434841733, −3.60178337047165907387846722625, −0.829612006890533559189950114411, 1.46115901389038491751261584149, 2.96840505022850825840962237212, 4.46139775769700275263718399258, 6.55577580489051849216816057328, 7.76227375458132387545256065323, 9.463115796514080992692326646273, 11.05073628465816867390972774212, 11.65390573300999009588968813287, 13.24186584093703983104373336368, 14.12557797922968648063775179538

Graph of the $Z$-function along the critical line