Properties

Label 8-60e8-1.1-c0e4-0-1
Degree $8$
Conductor $1.680\times 10^{14}$
Sign $1$
Analytic cond. $10.4192$
Root an. cond. $1.34038$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·29-s − 5·37-s − 2·41-s − 4·49-s + 5·53-s + 2·61-s − 3·89-s + 2·101-s + 2·109-s − 5·113-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 5·185-s + ⋯
L(s)  = 1  − 5-s + 2·29-s − 5·37-s − 2·41-s − 4·49-s + 5·53-s + 2·61-s − 3·89-s + 2·101-s + 2·109-s − 5·113-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 5·185-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(10.4192\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1964750088\)
\(L(\frac12)\) \(\approx\) \(0.1964750088\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
good7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
23$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
29$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
31$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
41$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
53$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
59$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
67$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
71$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
73$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
79$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
89$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
97$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.45492659240324156768767701268, −6.00792228712597603146521484902, −5.78974993174937988107251461076, −5.66394339116937220832616683774, −5.19806232696311138521407665250, −5.18231871134800084587725311968, −5.07568582229331805525327098141, −4.97761918195855040222380763838, −4.74679029317903758268557891756, −4.42613765538212853670340185989, −4.08998780944420589025165940570, −3.86325151408085693293601480365, −3.74686920550808368791992454871, −3.69526012511733357314686300071, −3.38560599019448104241631322657, −3.22783399604624739038805683852, −2.89476261929471736936922618621, −2.62670045486089727583432503699, −2.44969324779487460457536327300, −2.05845295932628755071783506641, −1.93400362703778880498376230326, −1.48455746920464051305992032777, −1.22769238624880365053097598561, −1.07918697540379694633948221534, −0.16797970694903501799582829243, 0.16797970694903501799582829243, 1.07918697540379694633948221534, 1.22769238624880365053097598561, 1.48455746920464051305992032777, 1.93400362703778880498376230326, 2.05845295932628755071783506641, 2.44969324779487460457536327300, 2.62670045486089727583432503699, 2.89476261929471736936922618621, 3.22783399604624739038805683852, 3.38560599019448104241631322657, 3.69526012511733357314686300071, 3.74686920550808368791992454871, 3.86325151408085693293601480365, 4.08998780944420589025165940570, 4.42613765538212853670340185989, 4.74679029317903758268557891756, 4.97761918195855040222380763838, 5.07568582229331805525327098141, 5.18231871134800084587725311968, 5.19806232696311138521407665250, 5.66394339116937220832616683774, 5.78974993174937988107251461076, 6.00792228712597603146521484902, 6.45492659240324156768767701268

Graph of the $Z$-function along the critical line