Properties

Label 2-33-11.6-c6-0-5
Degree $2$
Conductor $33$
Sign $0.130 - 0.991i$
Analytic cond. $7.59178$
Root an. cond. $2.75531$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.51 − 1.46i)2-s + (−12.6 − 9.16i)3-s + (−33.5 + 24.3i)4-s + (6.35 − 19.5i)5-s + (−70.3 − 22.8i)6-s + (355. + 489. i)7-s + (−294. + 404. i)8-s + (75.0 + 231. i)9-s − 97.5i·10-s + (−598. + 1.18e3i)11-s + 646.·12-s + (654. − 212. i)13-s + (2.32e3 + 1.68e3i)14-s + (−259. + 188. i)15-s + (86.4 − 266. i)16-s + (−3.27e3 − 1.06e3i)17-s + ⋯
L(s)  = 1  + (0.564 − 0.183i)2-s + (−0.467 − 0.339i)3-s + (−0.524 + 0.380i)4-s + (0.0508 − 0.156i)5-s + (−0.325 − 0.105i)6-s + (1.03 + 1.42i)7-s + (−0.574 + 0.790i)8-s + (0.103 + 0.317i)9-s − 0.0975i·10-s + (−0.449 + 0.893i)11-s + 0.374·12-s + (0.297 − 0.0967i)13-s + (0.847 + 0.615i)14-s + (−0.0768 + 0.0558i)15-s + (0.0211 − 0.0649i)16-s + (−0.666 − 0.216i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.130 - 0.991i$
Analytic conductor: \(7.59178\)
Root analytic conductor: \(2.75531\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3),\ 0.130 - 0.991i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.05635 + 0.926872i\)
\(L(\frac12)\) \(\approx\) \(1.05635 + 0.926872i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (12.6 + 9.16i)T \)
11 \( 1 + (598. - 1.18e3i)T \)
good2 \( 1 + (-4.51 + 1.46i)T + (51.7 - 37.6i)T^{2} \)
5 \( 1 + (-6.35 + 19.5i)T + (-1.26e4 - 9.18e3i)T^{2} \)
7 \( 1 + (-355. - 489. i)T + (-3.63e4 + 1.11e5i)T^{2} \)
13 \( 1 + (-654. + 212. i)T + (3.90e6 - 2.83e6i)T^{2} \)
17 \( 1 + (3.27e3 + 1.06e3i)T + (1.95e7 + 1.41e7i)T^{2} \)
19 \( 1 + (4.16e3 - 5.72e3i)T + (-1.45e7 - 4.47e7i)T^{2} \)
23 \( 1 - 864.T + 1.48e8T^{2} \)
29 \( 1 + (8.64e3 + 1.18e4i)T + (-1.83e8 + 5.65e8i)T^{2} \)
31 \( 1 + (5.05e3 + 1.55e4i)T + (-7.18e8 + 5.21e8i)T^{2} \)
37 \( 1 + (5.77e3 - 4.19e3i)T + (7.92e8 - 2.44e9i)T^{2} \)
41 \( 1 + (-6.52e4 + 8.98e4i)T + (-1.46e9 - 4.51e9i)T^{2} \)
43 \( 1 - 1.34e5iT - 6.32e9T^{2} \)
47 \( 1 + (-1.92e4 - 1.39e4i)T + (3.33e9 + 1.02e10i)T^{2} \)
53 \( 1 + (-8.12e4 - 2.50e5i)T + (-1.79e10 + 1.30e10i)T^{2} \)
59 \( 1 + (-2.41e5 + 1.75e5i)T + (1.30e10 - 4.01e10i)T^{2} \)
61 \( 1 + (2.52e5 + 8.21e4i)T + (4.16e10 + 3.02e10i)T^{2} \)
67 \( 1 - 4.67e5T + 9.04e10T^{2} \)
71 \( 1 + (-2.17e4 + 6.70e4i)T + (-1.03e11 - 7.52e10i)T^{2} \)
73 \( 1 + (5.85e4 + 8.05e4i)T + (-4.67e10 + 1.43e11i)T^{2} \)
79 \( 1 + (-4.95e5 + 1.61e5i)T + (1.96e11 - 1.42e11i)T^{2} \)
83 \( 1 + (4.65e5 + 1.51e5i)T + (2.64e11 + 1.92e11i)T^{2} \)
89 \( 1 - 3.28e5T + 4.96e11T^{2} \)
97 \( 1 + (2.55e5 + 7.85e5i)T + (-6.73e11 + 4.89e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.43904762417788959479350176533, −14.45227017970994735097621177971, −12.96007719636695520007418272447, −12.24656311690687525236266721111, −11.16015460036342287581878388805, −9.090961171990713285241978936333, −7.917049980513582027592085164922, −5.71597301796376100444133005013, −4.62457365673913842903511503741, −2.22217598979834216001592610331, 0.68102773889581617369886315149, 4.00782725676292980128444240849, 5.13064977076128059472562872795, 6.75413710438024508700672679436, 8.632401900874710253468526472063, 10.42405369128282359384756587924, 11.13422972514538039743733377467, 13.07834704181133625585481089103, 13.96620367816665136739857829140, 14.93545372707587000242431869303

Graph of the $Z$-function along the critical line