Properties

Label 2-33-11.8-c6-0-4
Degree $2$
Conductor $33$
Sign $-0.816 - 0.577i$
Analytic cond. $7.59178$
Root an. cond. $2.75531$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8.96 + 12.3i)2-s + (−4.81 − 14.8i)3-s + (−52.1 + 160. i)4-s + (137. + 100. i)5-s + (139. − 192. i)6-s + (−91.3 − 29.6i)7-s + (−1.52e3 + 494. i)8-s + (−196. + 142. i)9-s + 2.59e3i·10-s + (−720. − 1.11e3i)11-s + 2.63e3·12-s + (1.47e3 + 2.02e3i)13-s + (−452. − 1.39e3i)14-s + (820. − 2.52e3i)15-s + (−1.10e4 − 7.99e3i)16-s + (−302. + 416. i)17-s + ⋯
L(s)  = 1  + (1.12 + 1.54i)2-s + (−0.178 − 0.549i)3-s + (−0.815 + 2.50i)4-s + (1.10 + 0.800i)5-s + (0.647 − 0.890i)6-s + (−0.266 − 0.0865i)7-s + (−2.97 + 0.965i)8-s + (−0.269 + 0.195i)9-s + 2.59i·10-s + (−0.541 − 0.840i)11-s + 1.52·12-s + (0.670 + 0.922i)13-s + (−0.165 − 0.508i)14-s + (0.242 − 0.747i)15-s + (−2.68 − 1.95i)16-s + (−0.0616 + 0.0848i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.816 - 0.577i$
Analytic conductor: \(7.59178\)
Root analytic conductor: \(2.75531\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3),\ -0.816 - 0.577i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.855142 + 2.69163i\)
\(L(\frac12)\) \(\approx\) \(0.855142 + 2.69163i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (4.81 + 14.8i)T \)
11 \( 1 + (720. + 1.11e3i)T \)
good2 \( 1 + (-8.96 - 12.3i)T + (-19.7 + 60.8i)T^{2} \)
5 \( 1 + (-137. - 100. i)T + (4.82e3 + 1.48e4i)T^{2} \)
7 \( 1 + (91.3 + 29.6i)T + (9.51e4 + 6.91e4i)T^{2} \)
13 \( 1 + (-1.47e3 - 2.02e3i)T + (-1.49e6 + 4.59e6i)T^{2} \)
17 \( 1 + (302. - 416. i)T + (-7.45e6 - 2.29e7i)T^{2} \)
19 \( 1 + (-1.01e4 + 3.28e3i)T + (3.80e7 - 2.76e7i)T^{2} \)
23 \( 1 - 2.21e4T + 1.48e8T^{2} \)
29 \( 1 + (1.11e4 + 3.62e3i)T + (4.81e8 + 3.49e8i)T^{2} \)
31 \( 1 + (1.02e4 - 7.43e3i)T + (2.74e8 - 8.44e8i)T^{2} \)
37 \( 1 + (-9.88e3 + 3.04e4i)T + (-2.07e9 - 1.50e9i)T^{2} \)
41 \( 1 + (-3.16e4 + 1.02e4i)T + (3.84e9 - 2.79e9i)T^{2} \)
43 \( 1 + 2.16e4iT - 6.32e9T^{2} \)
47 \( 1 + (1.85e4 + 5.70e4i)T + (-8.72e9 + 6.33e9i)T^{2} \)
53 \( 1 + (1.32e5 - 9.62e4i)T + (6.84e9 - 2.10e10i)T^{2} \)
59 \( 1 + (-4.67e3 + 1.43e4i)T + (-3.41e10 - 2.47e10i)T^{2} \)
61 \( 1 + (1.92e4 - 2.65e4i)T + (-1.59e10 - 4.89e10i)T^{2} \)
67 \( 1 - 4.01e5T + 9.04e10T^{2} \)
71 \( 1 + (3.69e5 + 2.68e5i)T + (3.95e10 + 1.21e11i)T^{2} \)
73 \( 1 + (2.12e5 + 6.90e4i)T + (1.22e11 + 8.89e10i)T^{2} \)
79 \( 1 + (4.07e5 + 5.60e5i)T + (-7.51e10 + 2.31e11i)T^{2} \)
83 \( 1 + (6.62e5 - 9.11e5i)T + (-1.01e11 - 3.10e11i)T^{2} \)
89 \( 1 - 4.04e5T + 4.96e11T^{2} \)
97 \( 1 + (-1.05e6 + 7.62e5i)T + (2.57e11 - 7.92e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.84976598537970099049670553741, −14.44758460861966444878347288498, −13.67707815913413226747529091099, −13.04837522420275511374756148444, −11.28576333063214341114915024370, −9.023202550121440958604814754157, −7.31265514847806584674571292615, −6.37940326026343916395402359595, −5.36988457393675111669634054458, −3.10941769397676481174208551505, 1.24574012351014796455417020085, 3.05370829713375571743160399418, 4.89966915208097416948420353532, 5.69677210693702994604916050973, 9.328727635746088159148617305725, 10.05241380624775049482043877567, 11.25701676975717158105960301231, 12.76296089147650733604700086203, 13.20550894228739474035725469919, 14.53882087470838384137602559546

Graph of the $Z$-function along the critical line