Properties

Label 2-33-11.2-c6-0-0
Degree $2$
Conductor $33$
Sign $0.760 - 0.649i$
Analytic cond. $7.59178$
Root an. cond. $2.75531$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.17 − 1.68i)2-s + (−12.6 + 9.16i)3-s + (−27.8 − 20.2i)4-s + (−25.6 − 78.9i)5-s + (80.6 − 26.1i)6-s + (−29.3 + 40.4i)7-s + (314. + 432. i)8-s + (75.0 − 231. i)9-s + 451. i·10-s + (−670. + 1.14e3i)11-s + 536.·12-s + (3.71e3 + 1.20e3i)13-s + (219. − 159. i)14-s + (1.04e3 + 760. i)15-s + (−218. − 671. i)16-s + (3.27e3 − 1.06e3i)17-s + ⋯
L(s)  = 1  + (−0.646 − 0.210i)2-s + (−0.467 + 0.339i)3-s + (−0.435 − 0.316i)4-s + (−0.205 − 0.631i)5-s + (0.373 − 0.121i)6-s + (−0.0856 + 0.117i)7-s + (0.614 + 0.845i)8-s + (0.103 − 0.317i)9-s + 0.451i·10-s + (−0.504 + 0.863i)11-s + 0.310·12-s + (1.69 + 0.549i)13-s + (0.0801 − 0.0582i)14-s + (0.310 + 0.225i)15-s + (−0.0532 − 0.163i)16-s + (0.665 − 0.216i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.760 - 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.760 - 0.649i$
Analytic conductor: \(7.59178\)
Root analytic conductor: \(2.75531\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3),\ 0.760 - 0.649i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.685689 + 0.252765i\)
\(L(\frac12)\) \(\approx\) \(0.685689 + 0.252765i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (12.6 - 9.16i)T \)
11 \( 1 + (670. - 1.14e3i)T \)
good2 \( 1 + (5.17 + 1.68i)T + (51.7 + 37.6i)T^{2} \)
5 \( 1 + (25.6 + 78.9i)T + (-1.26e4 + 9.18e3i)T^{2} \)
7 \( 1 + (29.3 - 40.4i)T + (-3.63e4 - 1.11e5i)T^{2} \)
13 \( 1 + (-3.71e3 - 1.20e3i)T + (3.90e6 + 2.83e6i)T^{2} \)
17 \( 1 + (-3.27e3 + 1.06e3i)T + (1.95e7 - 1.41e7i)T^{2} \)
19 \( 1 + (-3.32e3 - 4.57e3i)T + (-1.45e7 + 4.47e7i)T^{2} \)
23 \( 1 + 1.54e4T + 1.48e8T^{2} \)
29 \( 1 + (1.95e4 - 2.68e4i)T + (-1.83e8 - 5.65e8i)T^{2} \)
31 \( 1 + (-7.25e3 + 2.23e4i)T + (-7.18e8 - 5.21e8i)T^{2} \)
37 \( 1 + (-5.27e4 - 3.83e4i)T + (7.92e8 + 2.44e9i)T^{2} \)
41 \( 1 + (-2.27e4 - 3.12e4i)T + (-1.46e9 + 4.51e9i)T^{2} \)
43 \( 1 - 5.68e4iT - 6.32e9T^{2} \)
47 \( 1 + (-3.10e4 + 2.25e4i)T + (3.33e9 - 1.02e10i)T^{2} \)
53 \( 1 + (2.84e4 - 8.75e4i)T + (-1.79e10 - 1.30e10i)T^{2} \)
59 \( 1 + (-1.06e5 - 7.71e4i)T + (1.30e10 + 4.01e10i)T^{2} \)
61 \( 1 + (-2.49e5 + 8.12e4i)T + (4.16e10 - 3.02e10i)T^{2} \)
67 \( 1 + 4.94e5T + 9.04e10T^{2} \)
71 \( 1 + (-1.07e5 - 3.31e5i)T + (-1.03e11 + 7.52e10i)T^{2} \)
73 \( 1 + (2.79e4 - 3.85e4i)T + (-4.67e10 - 1.43e11i)T^{2} \)
79 \( 1 + (3.41e5 + 1.10e5i)T + (1.96e11 + 1.42e11i)T^{2} \)
83 \( 1 + (2.08e5 - 6.78e4i)T + (2.64e11 - 1.92e11i)T^{2} \)
89 \( 1 + 1.98e5T + 4.96e11T^{2} \)
97 \( 1 + (1.94e5 - 5.97e5i)T + (-6.73e11 - 4.89e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92534413459972992641931451995, −14.39297047805814874845186093551, −13.02028194275645311390932237337, −11.62582939052584151777746445689, −10.33508296253618727363562257477, −9.284372598977341333531008012969, −8.027236144073472710873412083221, −5.77644537509614884081081295443, −4.32109129557625160241886391005, −1.22452632533298438277085213343, 0.63053833828956303684517764282, 3.58560424864041582389397539908, 5.90065679566135800413858400159, 7.48788920683700467524661437713, 8.564942046352755249186150042107, 10.26582478471064750597805896652, 11.33532710637010807809957707507, 12.98304227465983482804703038716, 13.85630766369589415540145056967, 15.71490730547139070001221018769

Graph of the $Z$-function along the critical line