Properties

Label 24-33e12-1.1-c6e12-0-0
Degree $24$
Conductor $1.668\times 10^{18}$
Sign $1$
Analytic cond. $3.66544\times 10^{10}$
Root an. cond. $2.75531$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 282·4-s + 224·5-s + 1.45e3·9-s − 3.46e3·11-s + 3.78e4·16-s + 6.31e4·20-s − 1.53e4·23-s − 2.08e4·25-s − 5.86e4·31-s + 4.11e5·36-s − 2.02e5·37-s − 9.76e5·44-s + 3.26e5·45-s + 5.16e5·47-s + 7.84e5·49-s − 1.04e6·53-s − 7.75e5·55-s − 4.61e5·59-s + 3.12e6·64-s + 3.64e5·67-s − 7.55e5·71-s + 8.47e6·80-s + 1.24e6·81-s − 3.51e6·89-s − 4.31e6·92-s + 2.37e6·97-s − 5.05e6·99-s + ⋯
L(s)  = 1  + 4.40·4-s + 1.79·5-s + 2·9-s − 2.60·11-s + 9.23·16-s + 7.89·20-s − 1.25·23-s − 1.33·25-s − 1.96·31-s + 8.81·36-s − 3.99·37-s − 11.4·44-s + 3.58·45-s + 4.97·47-s + 6.67·49-s − 7.00·53-s − 4.66·55-s − 2.24·59-s + 11.9·64-s + 1.21·67-s − 2.10·71-s + 16.5·80-s + 7/3·81-s − 4.98·89-s − 5.54·92-s + 2.59·97-s − 5.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 11^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 11^{12}\right)^{s/2} \, \Gamma_{\C}(s+3)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{12} \cdot 11^{12}\)
Sign: $1$
Analytic conductor: \(3.66544\times 10^{10}\)
Root analytic conductor: \(2.75531\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 3^{12} \cdot 11^{12} ,\ ( \ : [3]^{12} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.0001622276064\)
\(L(\frac12)\) \(\approx\) \(0.0001622276064\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 - p^{5} T^{2} )^{6} \)
11 \( 1 + 3464 T + 739774 p T^{2} + 90237000 p^{2} T^{3} + 6476180021 p^{3} T^{4} - 8976173296 p^{5} T^{5} - 44209374932 p^{8} T^{6} - 8976173296 p^{11} T^{7} + 6476180021 p^{15} T^{8} + 90237000 p^{20} T^{9} + 739774 p^{25} T^{10} + 3464 p^{30} T^{11} + p^{36} T^{12} \)
good2 \( 1 - 141 p T^{2} + 41697 T^{4} - 1054777 p^{2} T^{6} + 85912053 p^{2} T^{8} - 24161997 p^{10} T^{10} + 50291025 p^{15} T^{12} - 24161997 p^{22} T^{14} + 85912053 p^{26} T^{16} - 1054777 p^{38} T^{18} + 41697 p^{48} T^{20} - 141 p^{61} T^{22} + p^{72} T^{24} \)
5 \( ( 1 - 112 T + 29234 T^{2} - 147048 p^{2} T^{3} + 24331963 p^{2} T^{4} - 656790328 p^{3} T^{5} + 19833344404 p^{4} T^{6} - 656790328 p^{9} T^{7} + 24331963 p^{14} T^{8} - 147048 p^{20} T^{9} + 29234 p^{24} T^{10} - 112 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
7 \( 1 - 784800 T^{2} + 46389854778 p T^{4} - 91703033397949408 T^{6} + \)\(19\!\cdots\!75\)\( T^{8} - \)\(31\!\cdots\!84\)\( T^{10} + \)\(41\!\cdots\!76\)\( T^{12} - \)\(31\!\cdots\!84\)\( p^{12} T^{14} + \)\(19\!\cdots\!75\)\( p^{24} T^{16} - 91703033397949408 p^{36} T^{18} + 46389854778 p^{49} T^{20} - 784800 p^{60} T^{22} + p^{72} T^{24} \)
13 \( 1 - 11813004 T^{2} + 173649316619562 T^{4} - \)\(13\!\cdots\!40\)\( T^{6} + \)\(11\!\cdots\!27\)\( T^{8} - \)\(64\!\cdots\!96\)\( T^{10} + \)\(35\!\cdots\!44\)\( T^{12} - \)\(64\!\cdots\!96\)\( p^{12} T^{14} + \)\(11\!\cdots\!27\)\( p^{24} T^{16} - \)\(13\!\cdots\!40\)\( p^{36} T^{18} + 173649316619562 p^{48} T^{20} - 11813004 p^{60} T^{22} + p^{72} T^{24} \)
17 \( 1 - 112969992 T^{2} + 7355558115683166 T^{4} - \)\(33\!\cdots\!68\)\( T^{6} + \)\(74\!\cdots\!55\)\( p T^{8} - \)\(39\!\cdots\!52\)\( T^{10} + \)\(10\!\cdots\!48\)\( T^{12} - \)\(39\!\cdots\!52\)\( p^{12} T^{14} + \)\(74\!\cdots\!55\)\( p^{25} T^{16} - \)\(33\!\cdots\!68\)\( p^{36} T^{18} + 7355558115683166 p^{48} T^{20} - 112969992 p^{60} T^{22} + p^{72} T^{24} \)
19 \( 1 - 298936704 T^{2} + 47587972333287630 T^{4} - \)\(51\!\cdots\!12\)\( T^{6} + \)\(42\!\cdots\!31\)\( T^{8} - \)\(27\!\cdots\!04\)\( T^{10} + \)\(14\!\cdots\!72\)\( T^{12} - \)\(27\!\cdots\!04\)\( p^{12} T^{14} + \)\(42\!\cdots\!31\)\( p^{24} T^{16} - \)\(51\!\cdots\!12\)\( p^{36} T^{18} + 47587972333287630 p^{48} T^{20} - 298936704 p^{60} T^{22} + p^{72} T^{24} \)
23 \( ( 1 + 7652 T + 314675762 T^{2} + 898155402636 T^{3} + 60250870240477171 T^{4} + \)\(30\!\cdots\!60\)\( T^{5} + \)\(11\!\cdots\!60\)\( T^{6} + \)\(30\!\cdots\!60\)\( p^{6} T^{7} + 60250870240477171 p^{12} T^{8} + 898155402636 p^{18} T^{9} + 314675762 p^{24} T^{10} + 7652 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
29 \( 1 - 3552464472 T^{2} + 7069307690910966078 T^{4} - \)\(97\!\cdots\!24\)\( T^{6} + \)\(34\!\cdots\!99\)\( p T^{8} - \)\(83\!\cdots\!92\)\( T^{10} + \)\(54\!\cdots\!60\)\( T^{12} - \)\(83\!\cdots\!92\)\( p^{12} T^{14} + \)\(34\!\cdots\!99\)\( p^{25} T^{16} - \)\(97\!\cdots\!24\)\( p^{36} T^{18} + 7069307690910966078 p^{48} T^{20} - 3552464472 p^{60} T^{22} + p^{72} T^{24} \)
31 \( ( 1 + 29304 T + 2909337822 T^{2} + 67282988073368 T^{3} + 4222373507783705727 T^{4} + \)\(85\!\cdots\!92\)\( T^{5} + \)\(43\!\cdots\!24\)\( T^{6} + \)\(85\!\cdots\!92\)\( p^{6} T^{7} + 4222373507783705727 p^{12} T^{8} + 67282988073368 p^{18} T^{9} + 2909337822 p^{24} T^{10} + 29304 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
37 \( ( 1 + 101256 T + 8636966478 T^{2} + 484631270053544 T^{3} + 33956810947327452207 T^{4} + \)\(20\!\cdots\!48\)\( T^{5} + \)\(32\!\cdots\!68\)\( p T^{6} + \)\(20\!\cdots\!48\)\( p^{6} T^{7} + 33956810947327452207 p^{12} T^{8} + 484631270053544 p^{18} T^{9} + 8636966478 p^{24} T^{10} + 101256 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
41 \( 1 - 18443226360 T^{2} + \)\(19\!\cdots\!26\)\( T^{4} - \)\(14\!\cdots\!20\)\( T^{6} + \)\(94\!\cdots\!19\)\( T^{8} - \)\(52\!\cdots\!20\)\( T^{10} + \)\(26\!\cdots\!44\)\( T^{12} - \)\(52\!\cdots\!20\)\( p^{12} T^{14} + \)\(94\!\cdots\!19\)\( p^{24} T^{16} - \)\(14\!\cdots\!20\)\( p^{36} T^{18} + \)\(19\!\cdots\!26\)\( p^{48} T^{20} - 18443226360 p^{60} T^{22} + p^{72} T^{24} \)
43 \( 1 - 23801189952 T^{2} + \)\(39\!\cdots\!58\)\( T^{4} - \)\(47\!\cdots\!28\)\( T^{6} + \)\(45\!\cdots\!71\)\( T^{8} - \)\(36\!\cdots\!92\)\( T^{10} + \)\(24\!\cdots\!12\)\( T^{12} - \)\(36\!\cdots\!92\)\( p^{12} T^{14} + \)\(45\!\cdots\!71\)\( p^{24} T^{16} - \)\(47\!\cdots\!28\)\( p^{36} T^{18} + \)\(39\!\cdots\!58\)\( p^{48} T^{20} - 23801189952 p^{60} T^{22} + p^{72} T^{24} \)
47 \( ( 1 - 258460 T + 80997697934 T^{2} - 13130966707228932 T^{3} + \)\(23\!\cdots\!79\)\( T^{4} - \)\(27\!\cdots\!60\)\( T^{5} + \)\(71\!\cdots\!08\)\( p T^{6} - \)\(27\!\cdots\!60\)\( p^{6} T^{7} + \)\(23\!\cdots\!79\)\( p^{12} T^{8} - 13130966707228932 p^{18} T^{9} + 80997697934 p^{24} T^{10} - 258460 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
53 \( ( 1 + 9832 p T + 230179608818 T^{2} + 64512279082152192 T^{3} + \)\(15\!\cdots\!39\)\( T^{4} + \)\(29\!\cdots\!76\)\( T^{5} + \)\(50\!\cdots\!52\)\( T^{6} + \)\(29\!\cdots\!76\)\( p^{6} T^{7} + \)\(15\!\cdots\!39\)\( p^{12} T^{8} + 64512279082152192 p^{18} T^{9} + 230179608818 p^{24} T^{10} + 9832 p^{31} T^{11} + p^{36} T^{12} )^{2} \)
59 \( ( 1 + 230504 T + 221620610954 T^{2} + 38998264192118184 T^{3} + \)\(20\!\cdots\!99\)\( T^{4} + \)\(28\!\cdots\!68\)\( T^{5} + \)\(11\!\cdots\!28\)\( T^{6} + \)\(28\!\cdots\!68\)\( p^{6} T^{7} + \)\(20\!\cdots\!99\)\( p^{12} T^{8} + 38998264192118184 p^{18} T^{9} + 221620610954 p^{24} T^{10} + 230504 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
61 \( 1 - 344957455356 T^{2} + \)\(58\!\cdots\!66\)\( T^{4} - \)\(63\!\cdots\!48\)\( T^{6} + \)\(51\!\cdots\!59\)\( T^{8} - \)\(32\!\cdots\!44\)\( T^{10} + \)\(17\!\cdots\!88\)\( T^{12} - \)\(32\!\cdots\!44\)\( p^{12} T^{14} + \)\(51\!\cdots\!59\)\( p^{24} T^{16} - \)\(63\!\cdots\!48\)\( p^{36} T^{18} + \)\(58\!\cdots\!66\)\( p^{48} T^{20} - 344957455356 p^{60} T^{22} + p^{72} T^{24} \)
67 \( ( 1 - 182376 T + 317875829886 T^{2} - 34532602304668456 T^{3} + \)\(46\!\cdots\!79\)\( T^{4} - \)\(36\!\cdots\!72\)\( T^{5} + \)\(48\!\cdots\!60\)\( T^{6} - \)\(36\!\cdots\!72\)\( p^{6} T^{7} + \)\(46\!\cdots\!79\)\( p^{12} T^{8} - 34532602304668456 p^{18} T^{9} + 317875829886 p^{24} T^{10} - 182376 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
71 \( ( 1 + 377588 T + 6245146642 p T^{2} + 168724078391174988 T^{3} + \)\(10\!\cdots\!11\)\( T^{4} + \)\(36\!\cdots\!64\)\( T^{5} + \)\(16\!\cdots\!84\)\( T^{6} + \)\(36\!\cdots\!64\)\( p^{6} T^{7} + \)\(10\!\cdots\!11\)\( p^{12} T^{8} + 168724078391174988 p^{18} T^{9} + 6245146642 p^{25} T^{10} + 377588 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
73 \( 1 - 1038551693052 T^{2} + \)\(52\!\cdots\!34\)\( T^{4} - \)\(17\!\cdots\!24\)\( T^{6} + \)\(44\!\cdots\!75\)\( T^{8} - \)\(89\!\cdots\!52\)\( T^{10} + \)\(14\!\cdots\!40\)\( T^{12} - \)\(89\!\cdots\!52\)\( p^{12} T^{14} + \)\(44\!\cdots\!75\)\( p^{24} T^{16} - \)\(17\!\cdots\!24\)\( p^{36} T^{18} + \)\(52\!\cdots\!34\)\( p^{48} T^{20} - 1038551693052 p^{60} T^{22} + p^{72} T^{24} \)
79 \( 1 - 2060241143040 T^{2} + \)\(20\!\cdots\!02\)\( T^{4} - \)\(12\!\cdots\!72\)\( T^{6} + \)\(58\!\cdots\!51\)\( T^{8} - \)\(20\!\cdots\!32\)\( T^{10} + \)\(55\!\cdots\!96\)\( T^{12} - \)\(20\!\cdots\!32\)\( p^{12} T^{14} + \)\(58\!\cdots\!51\)\( p^{24} T^{16} - \)\(12\!\cdots\!72\)\( p^{36} T^{18} + \)\(20\!\cdots\!02\)\( p^{48} T^{20} - 2060241143040 p^{60} T^{22} + p^{72} T^{24} \)
83 \( 1 - 1043972235372 T^{2} + \)\(84\!\cdots\!42\)\( T^{4} - \)\(43\!\cdots\!80\)\( T^{6} + \)\(20\!\cdots\!39\)\( T^{8} - \)\(72\!\cdots\!88\)\( T^{10} + \)\(25\!\cdots\!00\)\( T^{12} - \)\(72\!\cdots\!88\)\( p^{12} T^{14} + \)\(20\!\cdots\!39\)\( p^{24} T^{16} - \)\(43\!\cdots\!80\)\( p^{36} T^{18} + \)\(84\!\cdots\!42\)\( p^{48} T^{20} - 1043972235372 p^{60} T^{22} + p^{72} T^{24} \)
89 \( ( 1 + 1756772 T + 2562798883442 T^{2} + 2577409891035591252 T^{3} + \)\(24\!\cdots\!83\)\( T^{4} + \)\(19\!\cdots\!88\)\( T^{5} + \)\(14\!\cdots\!88\)\( T^{6} + \)\(19\!\cdots\!88\)\( p^{6} T^{7} + \)\(24\!\cdots\!83\)\( p^{12} T^{8} + 2577409891035591252 p^{18} T^{9} + 2562798883442 p^{24} T^{10} + 1756772 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
97 \( ( 1 - 1185096 T + 3545530528134 T^{2} - 3370506166089168808 T^{3} + \)\(54\!\cdots\!91\)\( T^{4} - \)\(43\!\cdots\!64\)\( T^{5} + \)\(53\!\cdots\!96\)\( T^{6} - \)\(43\!\cdots\!64\)\( p^{6} T^{7} + \)\(54\!\cdots\!91\)\( p^{12} T^{8} - 3370506166089168808 p^{18} T^{9} + 3545530528134 p^{24} T^{10} - 1185096 p^{30} T^{11} + p^{36} T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.06554293288893309691207413680, −4.95040704645644614494417329533, −4.57776221060929770589612168723, −4.49072428382574826542811934492, −4.19766028156401372681237985225, −4.18469403204910888853047962586, −3.94192123976492620428799955276, −3.79639424741695901015245695918, −3.57873691172918402812921768969, −3.22050055387751544524956502636, −3.02664307031210106553585887541, −2.90269473632836224807737029894, −2.80256667506157408310383699124, −2.58599372663401953198625448740, −2.38439482065377156074527019593, −2.07271372633331739032644253599, −1.93348304084515901400216595309, −1.89791084913676605870523943980, −1.80968805233278152121600546465, −1.77784599995074291590159499694, −1.47147528814225046857801491889, −1.21247151656150849529085846274, −0.68013833145883201412574428451, −0.50778356046003743427724412078, −0.00047192508862913396893149720, 0.00047192508862913396893149720, 0.50778356046003743427724412078, 0.68013833145883201412574428451, 1.21247151656150849529085846274, 1.47147528814225046857801491889, 1.77784599995074291590159499694, 1.80968805233278152121600546465, 1.89791084913676605870523943980, 1.93348304084515901400216595309, 2.07271372633331739032644253599, 2.38439482065377156074527019593, 2.58599372663401953198625448740, 2.80256667506157408310383699124, 2.90269473632836224807737029894, 3.02664307031210106553585887541, 3.22050055387751544524956502636, 3.57873691172918402812921768969, 3.79639424741695901015245695918, 3.94192123976492620428799955276, 4.18469403204910888853047962586, 4.19766028156401372681237985225, 4.49072428382574826542811934492, 4.57776221060929770589612168723, 4.95040704645644614494417329533, 5.06554293288893309691207413680

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.